We study the design of a decentralized two-sided matching market in which agents' search is guided by the platform. There are finitely many agent types, each with (potentially random) preferences drawn from known type-specific distributions. Equipped with such distributional knowledge, the platform guides the search process by determining the meeting rate between each pair of types from the two sides. Focusing on symmetric pairwise preferences in a continuum model, we first characterize the unique stationary equilibrium that arises given a feasible set of meeting rates. We then introduce the platform's optimal directed search problem, which involves optimizing meeting rates to maximize equilibrium social welfare. We first show that incentive issues arising from congestion and cannibalization makes the design problem fairly intricate. Nonetheless, we develop an efficiently computable solution whose corresponding equilibrium achieves at least 1/4 of the optimal social welfare. Our directed search design is simple and easy-to-implement, as its corresponding bipartite graph consists of disjoint stars. Furthermore, our solution implies that the platform can substantially limit choice and yet induce an equilibrium with an approximately optimal welfare. Finally, we show that approximation is the likely best we can hope by establishing that the problem of designing optimal directed search is NP-hard to approximate beyond a certain constant factor.
翻译:我们研究一个分散的双向匹配市场的设计,由平台指导代理商的搜索。 存在有限的多种代理类型, 每种( 可能随机的) 偏好来自已知特定类型分布。 有了这种分配知识, 该平台指导搜索过程, 确定来自两侧的每对类型之间的会议率。 我们以连续模式关注对称对称对称偏好, 我们首先用一套可行的会议率来描述独特的固定平衡。 然后我们引入该平台的最佳定向搜索问题, 包括优化会议率以最大限度地实现平衡社会福利。 我们首先显示, 由拥挤和食人化引起的激励问题使得设计问题相当复杂。 尽管如此, 我们开发了一个高效的可调和的解决方案, 其相应的平衡至少达到最佳社会福利的四分之一。 我们的定向搜索设计简单易行, 因为其对应的双向图由不协调的恒星组成。 此外, 我们的解决方案意味着, 该平台可以大大限制选择, 并带来一种平衡, 并且能带来一种最优化的社会福利。 最后, 我们表明, 近近的精确性是, 我们最有可能通过确定最佳的点, 最佳的点是, 设计某种最佳的定位, 最佳的定位是, 最接近于最佳的定位, 最接近于设计最佳的准点。