We refine a recently-proposed class of local entropic loss functions by restricting the smoothening regularization to only a subset of weights. The new loss functions are referred to as partial local entropies. They can adapt to the weight-space anisotropy, thus outperforming their isotropic counterparts. We support the theoretical analysis with experiments on image classification tasks performed with multi-layer, fully-connected and convolutional neural networks. The present study suggests how to better exploit the anisotropic nature of deep landscapes and provides direct probes of the shape of the minima encountered by stochastic gradient descent algorithms. As a by-product, we observe an asymptotic dynamical regime at late training times where the temperature of all the layers obeys a common cooling behavior.
翻译:我们通过将平稳的正规化仅限于一部分重量来完善最近提出的一组局部热带损失功能。 新的损失功能被称为局部局部的本地异种。 它们可以适应重量- 空间厌食性激素, 从而优于其异热带对应方。 我们支持理论分析, 实验通过多层、 完全连接和进化神经网络完成的图像分类任务。 本研究报告建议如何更好地利用深海地貌的厌食性性质, 并直接探索随机梯度梯度下行算法所遭遇的微粒形状。 作为副产品, 我们观察了在所有层的温度都符合常见冷却行为的晚期培训时的无症状动态系统。