Glioma is the most deadly brain tumor with high mortality. Treatment planning by human experts depends on the proper diagnosis of physical symptoms along with Magnetic Resonance(MR) image analysis. Highly variability of a brain tumor in terms of size, shape, location, and a high volume of MR images makes the analysis time-consuming. Automatic segmentation methods achieve a reduction in time with excellent reproducible results. The article aims to survey the advancement of automated methods for Glioma brain tumor segmentation. It is also essential to make an objective evaluation of various models based on the benchmark. Therefore, the 2012 - 2019 BraTS challenges database evaluates state-of-the-art methods. The complexity of tasks under the challenge has grown from segmentation (Task1) to overall survival prediction (Task 2) to uncertainty prediction for classification (Task 3). The paper covers the complete gamut of brain tumor segmentation using handcrafted features to deep neural network models for Task 1. The aim is to showcase a complete change of trends in automated brain tumor models. The paper also covers end to end joint models involving brain tumor segmentation and overall survival prediction. All the methods are probed, and parameters that affect performance are tabulated and analyzed.
翻译:Glioma是死亡率高的最致命的脑肿瘤。 人类专家的治疗规划取决于对物理症状的正确诊断以及磁共振图像分析。 脑肿瘤在大小、形状、位置和高容量MR图像方面的高度变异性使得分析耗费时间。 自动分解方法可以缩短时间,并产生极好的可复制结果。 文章旨在调查Glioma脑肿瘤分解自动化方法的进展。 还必须根据基准对各种模型进行客观评估。 因此, 2012-2019 BRATS挑战数据库评估最新方法。 挑战下的任务的复杂性从分解(Task1)到总体生存预测(Task 2),到分类的不确定性预测(Task3)。 本文覆盖了使用手制特征和深层神经网络模型进行脑肿瘤分解的完整组合。 目的是展示自动脑肿瘤模型趋势的全面变化。 文件还涵盖结束涉及脑肿瘤分解和总体生存预测的联合模型。 所有方法都是通过检测和参数来分析的。