We consider the problem of estimating a function from $n$ noisy samples whose discrete Total Variation (TV) is bounded by $C_n$. We reveal a deep connection to the seemingly disparate problem of Strongly Adaptive online learning (Daniely et al, 2015) and provide an $O(n \log n)$ time algorithm that attains the near minimax optimal rate of $\tilde O (n^{1/3}C_n^{2/3})$ under squared error loss. The resulting algorithm runs online and optimally adapts to the unknown smoothness parameter $C_n$. This leads to a new and more versatile alternative to wavelets-based methods for (1) adaptively estimating TV bounded functions; (2) online forecasting of TV bounded trends in time series.
翻译:我们考虑了用美元噪音样本估算一个功能的问题,美元噪音样本的离散总变化(TV)受美元C_n美元的约束。我们揭示了与强烈适应性在线学习这一似乎截然不同的问题的深刻联系(Daniely等人,2015年),并提供美元(n)n)美元时间算法,在平方差错损失下达到接近最低最佳的 $\tilde O (n1/3}C_n ⁇ 2/3}美元。由此产生的算法在网上运行,并最优化地适应未知的平滑参数$C_n美元。这导致一种新的、更灵活的替代波子为基础的方法,以便(1) 适应性地估计电视捆绑功能;(2) 在线预测时间序列中电视捆绑趋势。