A graph $G$ with vertex set $V(G)$ and edge set $E(G)$ is said to be word-representable if there exists a word $w$ over the alphabet $V(G)$ such that, for any two distinct letters $x,y \in V(G)$, the letters $x$ and $y$ alternate in $w$ if and only if $(x,y) \in E(G)$. Equivalently, a graph is word-representable if and only if it admits a semi-transitive orientation, that is, an acyclic orientation in which, for every directed path $v_0 \rightarrow v_1 \rightarrow \cdots \rightarrow v_m$ with $m \ge 2$, either there is no arc between $v_0$ and $v_m$, or, for all $1 \le i < j \le m$, there exists an arc from $v_i$ to $v_j$. In this work, we provide a comprehensive structural and algorithmic characterization of word-representable co-bipartite graphs, a class of graphs whose vertex set can be partitioned into two cliques. This work unifies graph-theoretic and matrix-theoretic perspectives. We first establish that a co-bipartite graph is a circle graph if and only if it is a permutation graph, thereby deriving a minimal forbidden induced subgraph characterization for co-bipartite circle graphs. The central contribution then connects semi-transitivity with the circularly compatible ones property of binary matrices. In addition to the structural characterization, the paper introduces a linear-time recognition algorithm for semi-transitive co-bipartite graphs, utilizing Safe's matrix recognition framework.
翻译:设图 $G$ 的顶点集为 $V(G)$,边集为 $E(G)$。若存在一个字母表为 $V(G)$ 的字 $w$,使得对于任意两个不同的字母 $x,y \in V(G)$,$x$ 和 $y$ 在 $w$ 中交替出现当且仅当 $(x,y) \in E(G)$,则称 $G$ 是字可表示的。等价地,一个图是字可表示的当且仅当它允许一个半传递定向,即一个无环定向,其中对于每条长度 $m \ge 2$ 的有向路径 $v_0 \\rightarrow v_1 \\rightarrow \\cdots \\rightarrow v_m$,要么 $v_0$ 与 $v_m$ 之间没有弧,要么对于所有 $1 \\le i < j \\le m$,都存在从 $v_i$ 到 $v_j$ 的弧。本文对字可表示的共二部图——即顶点集可划分为两个团的图类——提供了全面的结构和算法刻画,统一了图论和矩阵论的视角。我们首先证明了一个共二部图是圆图当且仅当它是置换图,从而推导出共二部圆图的极小禁止诱导子图刻画。核心贡献在于将半传递性与二元矩阵的循环相容性性质联系起来。除了结构刻画外,本文还基于 Safe 的矩阵识别框架,提出了一种用于识别半传递共二部图的线性时间算法。