Some languages allow arguments to be omitted in certain contexts. Yet human language comprehenders reliably infer the intended referents of these zero pronouns, in part because they construct expectations about which referents are more likely. We ask whether Neural Language Models also extract the same expectations. We test whether 12 contemporary language models display expectations that reflect human behavior when exposed to sentences with zero pronouns from five behavioral experiments conducted in Italian by Carminati (2005). We find that three models - XGLM 2.9B, 4.5B, and 7.5B - capture the human behavior from all the experiments, with others successfully modeling some of the results. This result suggests that human expectations about coreference can be derived from exposure to language, and also indicates features of language models that allow them to better reflect human behavior.
翻译:有些语言允许在某些情况下省略论点。 但是,人类语言理解者可靠地推断了这些零代词的预期参考词, 部分原因是他们构建了对哪些代词更可能的期望。 我们询问神经语言模型是否也得出同样的期望。 我们测试了12个当代语言模型在受到Carminati在意大利进行的5项行为实验中的无代词判决时是否体现了反映人类行为的预期(2005年),我们发现三个模型 — XGLM 2.9B、4.5B和7.5B — 捕捉了所有实验中的人类行为,而其他模型则成功地模拟了一些结果。 这一结果表明,人类对共同参照的期望可以从语言的接触中得出,并指明了语言模型的特征,使其能够更好地反映人类行为。