We consider a practical cell-free massive multiple-input-multiple-output (MIMO) system with multi-antenna access points (APs) and spatially correlated Rician fading channels. The significant phase-shift of the line-of-sight component induced by the user equipment movement is modeled randomly. Furthermore, we investigate the uplink spectral efficiency (SE) with maximum ratio (MR)/local minimum mean squared error (L-MMSE) combining and optimal large-scale fading decoding based on the phase-aware MMSE, phase-aware element-wise MMSE and linear MMSE (LMMSE) estimators. Then new closed-form SE expressions with MR combining are derived. Numerical results validate our derived expressions and show that the SE benefits from the spatial correlation. It is important to observe that the performance gap between L-MMSE and MR combining increases with the number of antennas per AP and the SE of the LMMSE estimator is lower than that of other estimators due to the lack of phase-shifts knowledge.
翻译:我们考虑采用一个实用的无细胞型大规模多投入-多输出(MIMO)系统,配有多防存取点(APs)和空间连接的Rician淡化通道。由用户设备移动引发的视线组件的重要阶段性移动是随机的模型。此外,我们调查了具有最大比率(MR)/地方最低平均正方差(L-MMSE)的上链链节节效率(SE)和最佳大型解码系统(L-MMSSE),分辨元素(MMSE)和线性MMSE(LMMSE)估计器。随后,生成了带有MR组合的新的封闭式SE表达式。数字结果证实了我们得出的表达方式,并表明SE从空间相关性中得到的好处。重要的是要注意到,L-MMSE和MR(MSE)之间的性能差距与每个AP天线和LMMSE测算器的增速率相比比其他测算器要低,因为缺乏分阶段变化的知识。