With the digitization of travel industry, it is more and more important to understand users from their online behaviors. However, online travel industry data are more challenging to analyze due to extra sparseness, dispersed user history actions, fast change of user interest and lack of direct or indirect feedbacks. In this work, a new similarity method is proposed to measure the destination similarity in terms of implicit user interest. By comparing the proposed method to several other widely used similarity measures in recommender systems, the proposed method achieves a significant improvement on travel data. Key words: Destination similarity, Travel industry, Recommender System, Implicit user interest


翻译:随着旅行业的数字化,越来越重要的是要了解用户的在线行为。然而,在线旅行业数据由于异常稀少、用户历史行动分散、用户兴趣迅速变化以及缺乏直接或间接反馈,分析起来更具有挑战性。在这项工作中,提出了一种新的类似方法,以衡量在隐含用户兴趣方面目的地的相似性。通过将拟议方法与推荐人系统中其他广泛使用的其他相似性措施进行比较,拟议方法大大改进了旅行数据。关键词:目的地相似性、旅行业、建议系统、隐含用户兴趣。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
82+阅读 · 2020年7月26日
Transformer文本分类代码
专知会员服务
118+阅读 · 2020年2月3日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
LibRec 精选:推荐系统9个必备数据集
LibRec智能推荐
6+阅读 · 2018年3月7日
随波逐流:Similarity-Adaptive and Discrete Optimization
我爱读PAMI
5+阅读 · 2018年2月6日
VIP会员
相关VIP内容
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
LibRec 精选:推荐系统9个必备数据集
LibRec智能推荐
6+阅读 · 2018年3月7日
随波逐流:Similarity-Adaptive and Discrete Optimization
我爱读PAMI
5+阅读 · 2018年2月6日
Top
微信扫码咨询专知VIP会员