The number of cyber attacks has increased tremendously in the last few years. This resulted into both human and financial losses at the individual and organization levels. Recently, cyber-criminals are leveraging new skills and capabilities by employing anti-forensics activities, techniques and tools to cover their tracks and evade any possible detection. Consequently, cyber-attacks are becoming more efficient and more sophisticated. Therefore, traditional cryptographic and non-cryptographic solutions and access control systems are no longer enough to prevent such cyber attacks, especially in terms of acquiring evidence for attack investigation. Hence, the need for well-defined, sophisticated, and advanced forensics investigation tools are highly required to track down cyber criminals and to reduce the number of cyber crimes. This paper reviews the different forensics and anti-forensics methods, tools, techniques, types, and challenges, while also discussing the rise of the anti-anti-forensics as a new forensics protection mechanism against anti-forensics activities. This would help forensics investigators to better understand the different anti-forensics tools, methods and techniques that cyber criminals employ while launching their attacks. Moreover, the limitations of the current forensics techniques are discussed, especially in terms of issues and challenges. Finally, this paper presents a holistic view from a literature point of view over the forensics domain and also helps other fellow colleagues in their quest to further understand the digital forensics domain.


翻译:过去几年来,网络攻击的数量急剧增加,这导致个人和组织两级的人员和财政损失。最近,网络罪犯利用反法医活动、技术和工具来掩盖其轨道并逃避任何可能的检测,从而利用新的技能和能力。因此,网络攻击正在变得更加高效和复杂。因此,传统的加密和非加密解决方案和出入控制系统已经不足以防止这种网络攻击,特别是获取攻击调查的证据。因此,非常需要定义明确、尖端和先进的法医调查工具,以追踪网络罪犯并减少网络犯罪的数量。本文回顾了不同的法医和反法医方法、工具、技术、类型和挑战,同时还讨论了反法医的崛起,将其作为打击反法医活动的新法证保护机制。这将有助于法医调查员更好地了解网络罪犯在发动攻击时所使用的不同的反法医工具、方法和技术。此外,目前法医技术的局限性,特别是从法医领域的其他观点来看,也有助于从法医领域的角度来理解其他的搜索。最后,从法医技术的局限性,从法医领域的角度,从其他观点,从法医领域的角度,从其他观点,从法医领域的角度,从其他观点,从法医领域的角度,从法医领域的角度,从其他观点,从法医领域的角度,从其他观点,从其他观点,从法医领域的角度,从其他观点,从其他观点,从法医领域的角度,从其他观点的角度看,可以理解。

1
下载
关闭预览

相关内容

这个新版本的工具会议系列恢复了从1989年到2012年的50个会议的传统。工具最初是“面向对象语言和系统的技术”,后来发展到包括软件技术的所有创新方面。今天许多最重要的软件概念都是在这里首次引入的。2019年TOOLS 50+1在俄罗斯喀山附近举行,以同样的创新精神、对所有与软件相关的事物的热情、科学稳健性和行业适用性的结合以及欢迎该领域所有趋势和社区的开放态度,延续了该系列。 官网链接:http://tools2019.innopolis.ru/
数字化健康白皮书,17页pdf
专知会员服务
107+阅读 · 2021年1月6日
专知会员服务
47+阅读 · 2020年12月4日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Nature 一周论文导读 | 2019 年 2 月 21 日
科研圈
14+阅读 · 2019年3月3日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年5月26日
Arxiv
6+阅读 · 2018年2月7日
VIP会员
相关VIP内容
数字化健康白皮书,17页pdf
专知会员服务
107+阅读 · 2021年1月6日
专知会员服务
47+阅读 · 2020年12月4日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
相关资讯
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Nature 一周论文导读 | 2019 年 2 月 21 日
科研圈
14+阅读 · 2019年3月3日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员