Multiple content providers rely on native advertisement for revenue by placing ads within the organic content of their pages. We refer to this setting as ``queryless'' to differentiate from search advertisement where a user submits a search query and gets back related ads. Understanding user intent is critical because relevant ads improve user experience and increase the likelihood of delivering clicks that have value to our advertisers. This paper presents Multi-Channel Sequential Behavior Network (MC-SBN), a deep learning approach for embedding users and ads in a semantic space in which relevance can be evaluated. Our proposed user encoder architecture summarizes user activities from multiple input channels--such as previous search queries, visited pages, or clicked ads--into a user vector. It uses multiple RNNs to encode sequences of event sessions from the different channels and then applies an attention mechanism to create the user representation. A key property of our approach is that user vectors can be maintained and updated incrementally, which makes it feasible to be deployed for large-scale serving. We conduct extensive experiments on real-world datasets. The results demonstrate that MC-SBN can improve the ranking of relevant ads and boost the performance of both click prediction and conversion prediction in the queryless native advertising setting.
翻译:多内容提供者依靠本地广告获取收入,在其网页的有机内容中张贴广告。我们将这一设置称为“无源”,以区别用户提交搜索查询和回馈相关广告的搜索广告。理解用户意图至关重要,因为相关广告可以改善用户经验,增加提供对我们广告商有价值的点击次数的可能性。本文介绍了多频道序列行为网络(MC-SBN),这是将用户和广告嵌入一个可以评估相关性的语义空间的深层次学习方法。我们提议的用户编码结构将用户活动从多个输入渠道(如以前的查询、访问网页或点击用户矢量)总结为用户活动。它使用多个网络从不同渠道对事件会议序列进行编码,然后运用关注机制来创建用户代表。我们方法的一个重要特性是用户矢量可以保持并逐步更新,从而能够被部署用于大规模服务。我们在现实世界数据集上进行广泛的实验,例如以前的查询、访问网页或点击用户矢量的自动上网。它使用多个网络从不同渠道对事件序列进行编码,然后运用关注机制来创建用户代表。我们的方法的一个重要特性是,用户矢量是可以维持并逐步更新,这样可以用于大规模服务。我们在现实世界数据集进行广泛的实验中进行广泛的实验。我们在推进的预测和不相关的升级中可以改进。