Textual Question Answering (QA) aims to provide precise answers to user's questions in natural language using unstructured data. One of the most popular approaches to this goal is machine reading comprehension(MRC). In recent years, many novel datasets and evaluation metrics based on classical MRC tasks have been proposed for broader textual QA tasks. In this paper, we survey 47 recent textual QA benchmark datasets and propose a new taxonomy from an application point of view. In addition, We summarize 8 evaluation metrics of textual QA tasks. Finally, we discuss current trends in constructing textual QA benchmarks and suggest directions for future work.


翻译:文本问题解答(QA)的目的是利用非结构化数据对用户使用自然语言的问题提供准确的答案。实现这一目标的最流行办法之一是机读理解(MRC) 近些年来,根据传统的MRC任务,提出了许多新的数据集和评价指标,用于更广泛的文本质解任务。在本文件中,我们调查了47个近期文本质解基准数据集,并从应用角度提出了一个新的分类。此外,我们总结了8项文本质解任务的评价指标。最后,我们讨论了构建文本质解基准的当前趋势,并为今后的工作提出了方向。

0
下载
关闭预览

相关内容

自动问答(Question Answering, QA)是指利用计算机自动回答用户所提出的问题以满足用户知识需求的任务。不同于现有搜索引擎,问答系统是信息服务的一种高级形式,系统返回用户的不再是基于关键词匹配排序的文档列表,而是精准的自然语言答案。近年来,随着人工智能的飞速发展,自动问答已经成为倍受关注且发展前景广泛的研究方向。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
【资源】问答阅读理解资源列表
专知
3+阅读 · 2020年7月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
【论文】图上的表示学习综述
机器学习研究会
15+阅读 · 2017年9月24日
【推荐】视频目标分割基础
机器学习研究会
9+阅读 · 2017年9月19日
Arxiv
3+阅读 · 2018年11月29日
QuAC : Question Answering in Context
Arxiv
4+阅读 · 2018年8月21日
VIP会员
相关资讯
Top
微信扫码咨询专知VIP会员