Theme detection is a fundamental task in user-centric dialogue systems, aiming to identify the latent topic of each utterance without relying on predefined schemas. Unlike intent induction, which operates within fixed label spaces, theme detection requires cross-dialogue consistency and alignment with personalized user preferences, posing significant challenges. Existing methods often struggle with sparse, short utterances for accurate topic representation and fail to capture user-level thematic preferences across dialogues. To address these challenges, we propose CATCH (Controllable Theme Detection with Contextualized Clustering and Hierarchical Generation), a unified framework that integrates three core components: (1) context-aware topic representation, which enriches utterance-level semantics using surrounding topic segments; (2) preference-guided topic clustering, which jointly models semantic proximity and personalized feedback to align themes across dialogue; and (3) a hierarchical theme generation mechanism designed to suppress noise and produce robust, coherent topic labels. Experiments on a multi-domain customer dialogue benchmark (DSTC-12) demonstrate the effectiveness of CATCH with 8B LLM in both theme clustering and topic generation quality.
翻译:主题检测是以用户为中心的对话系统中的一项基础任务,其目标是在不依赖预定义模式的情况下识别每个话语的潜在主题。与在固定标签空间内操作的意图归纳不同,主题检测要求跨对话的一致性和与个性化用户偏好的对齐,这带来了重大挑战。现有方法通常难以利用稀疏、简短的话语进行准确的主题表示,并且无法捕捉跨对话的用户级主题偏好。为应对这些挑战,我们提出了CATCH(基于上下文聚类与分层生成的可控主题检测),这是一个集成了三个核心组件的统一框架:(1)上下文感知主题表示,利用周围主题片段丰富话语级语义;(2)偏好引导的主题聚类,联合建模语义邻近性和个性化反馈,以实现跨对话的主题对齐;(3)一种分层主题生成机制,旨在抑制噪声并产生鲁棒、连贯的主题标签。在多领域客户对话基准(DSTC-12)上的实验证明了CATCH框架在使用8B参数大语言模型时,在主题聚类和主题生成质量方面的有效性。