This paper addresses the issue of long-scale correlations that is characteristic for symbolic music and is a challenge for modern generative algorithms. It suggests a very simple workaround for this challenge, namely, generation of a drum pattern that could be further used as a foundation for melody generation. The paper presents a large dataset of drum patterns alongside with corresponding melodies. It explores two possible methods for drum pattern generation. Exploring a latent space of drum patterns one could generate new drum patterns with a given music style. Finally, the paper demonstrates that a simple artificial neural network could be trained to generate melodies corresponding with these drum patters used as inputs. Resulting system could be used for end-to-end generation of symbolic music with song-like structure and higher long-scale correlations between the notes.
翻译:本文探讨具有象征意义的音乐特点的长期相关性问题,是现代基因算法的挑战。它提出了应对这一挑战的一个非常简单的办法,即生成一个可以进一步用作旋律生成基础的鼓型模型,该文件提供了大量鼓型模型的数据集,并附有相应的旋律。它探讨了鼓型模型生成的两种可能方法。探索一个鼓型模型的潜在空间,一个可以产生新的鼓型模型,并给定音乐风格。最后,该文件表明,可以培训一个简单的人工神经网络,以产生与这些用作投入的鼓触摸器相对应的旋律。结果系统可用于最终生成带有类似歌曲结构的象征性音乐,以及笔记之间更长期的关联。