The rapid development of Industrial Internet of Things (IIoT) technologies has not only enabled new applications, but also presented new challenges for reliable communication with limited resources. In this work, we define a deceptively simple novel problem that can arise in these scenarios, in which a set of sensors need to communicate a joint observation. This observation is shared by a random subset of the nodes, which need to propagate it to the rest of the network, but coordination is complex: as signaling constraints require the use of random access schemes over shared channels, each sensor needs to implicitly coordinate with others with the same observation, so that at least one of the transmissions gets through without collisions. Unlike existing medium access control schemes, the goal here is not to maximize total goodput, but rather to make sure that the shared message gets through, regardless of the sender. The lack of any signaling, aside from an acknowledgment or lack thereof from the rest of the network, makes determining the optimal collective transmission strategy a significant challenge. We analyze this coordination problem theoretically, prove its hardness, and provide low-complexity solutions. While a low-complexity clustering-based approach is shown to provide near-optimal performance in certain special cases, for the general scenarios, we model each sensor as a multi-armed bandit (MAB), and provide a learning-based solution. Numerical results show the effectiveness of this approach in a variety of cases.


翻译:在这项工作中,我们界定了在这种情景中可能出现的一个简单而明了的新问题,在这些情景中,传感器需要进行联合观测。这一观测由随机的节点分组共享,这些节点需要将其传播到网络的其余部分,但协调是复杂的:由于信号限制要求使用共享频道的随机接入计划,每个传感器需要与其它有相同观察的系统进行隐性协调,这样至少一个传输能够不受碰撞地通过。与现有的中等访问控制系统不同,这里的目标是确保共享信息能够通过,而不管发送者是谁。除了网络其余部分的认可或缺乏,缺乏任何信号,因此确定最佳的集体传输战略是一项重大挑战。我们从理论上分析这一协调问题,证明其硬性,并提供低兼容性解决方案。尽管基于低兼容性组合的模型方法与现有的中等有效,但这里的目标是确保共享信息能够通过,而不管发送者是谁。除了网络其余部分的认可或缺乏信号之外,缺乏任何信号,使得确定最佳的集体传输战略成为一项重大挑战。我们从理论上分析这一协调问题,证明其硬性,并且提供低度的解决方案。在每种特殊情况下,一种基于低频段式的模型方法提供了一种我们感官学习的一种特殊的情景。

0
下载
关闭预览

相关内容

CASES:International Conference on Compilers, Architectures, and Synthesis for Embedded Systems。 Explanation:嵌入式系统编译器、体系结构和综合国际会议。 Publisher:ACM。 SIT: http://dblp.uni-trier.de/db/conf/cases/index.html
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
RIS-Assisted Cooperative NOMA with SWIPT
Arxiv
0+阅读 · 2022年4月18日
Arxiv
22+阅读 · 2021年12月19日
A Comprehensive Survey on Transfer Learning
Arxiv
121+阅读 · 2019年11月7日
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员