Modern software development and operations rely on monitoring to understand how systems behave in production. The data provided by application logs and runtime environment are essential to detect and diagnose undesired behavior and improve system reliability. However, despite the rich ecosystem around industry-ready log solutions, monitoring complex systems and getting insights from log data remains a challenge. Researchers and practitioners have been actively working to address several challenges related to logs, e.g., how to effectively provide better tooling support for logging decisions to developers, how to effectively process and store log data, and how to extract insights from log data. A holistic view of the logging research field is key to provide directions and to disseminate the state-of-the-art for technology transferring. In this paper, we study 108 papers (72 research track papers, 24 journals, and 12 industry track papers) from different communities (e.g., machine learning, software engineering, and systems) and structure the research field in light to the life-cycle of log data. Our analysis shows that (1) logging is challenge not only in open source projects but also in industry, (2) machine learning is a promising approach to enable contextual analysis of source code for log recommendation but further investigation is required to assess the usability of those tools in practice, (3) few studies approached efficient persistence of log data, and (4) there are open opportunities to analyze application logs and to evaluate state-of-the-art log analysis techniques in a DevOps context.


翻译:应用日志和运行时间环境提供的数据对于检测和诊断不理想的行为和提高系统可靠性至关重要。然而,尽管行业成熟的日志解决方案周围生态系统丰富,但监测复杂的系统和从日志数据中获得洞察力仍是一个挑战。研究人员和从业人员一直在积极努力应对与日志有关的若干挑战,例如,如何根据日志数据生命周期有效地为开发者伐木决定提供更好的工具支持,如何有效地处理和储存日志数据,以及如何从日志数据中提取见解。对伐木研究领域的整体观点是提供指导和传播技术转让最新技术的关键。在本论文中,我们研究了来自不同社区的108份文件(72份研究轨道文件、24份期刊和12份行业轨道文件),(例如,机器学习、软件工程和系统),并根据日志数据的生命周期来构建研究领域。我们的分析表明:(1) 伐木不仅在开放源项目中,而且在工业中也是挑战。(2) 机学习是一种很有希望的方法,有助于对源码进行背景分析,用于对记录系统进行在线分析,但需要进一步评估这些系统工具的应用。

0
下载
关闭预览

相关内容

最新《自监督表示学习》报告,70页ppt
专知会员服务
85+阅读 · 2020年12月22日
多标签学习的新趋势(2020 Survey)
专知会员服务
41+阅读 · 2020年12月6日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | PRICAI 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年12月13日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Arxiv
0+阅读 · 2020年12月18日
VIP会员
相关VIP内容
最新《自监督表示学习》报告,70页ppt
专知会员服务
85+阅读 · 2020年12月22日
多标签学习的新趋势(2020 Survey)
专知会员服务
41+阅读 · 2020年12月6日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | PRICAI 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年12月13日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Top
微信扫码咨询专知VIP会员