Wikipedia is written in the wikitext markup language. When serving content, the MediaWiki software that powers Wikipedia parses wikitext to HTML, thereby inserting additional content by expanding macros (templates and mod-ules). Hence, researchers who intend to analyze Wikipediaas seen by its readers should work with HTML, rather than wikitext. Since Wikipedia's revision history is publicly available exclusively in wikitext format, researchers have had to produce HTML themselves, typically by using Wikipedia's REST API for ad-hoc wikitext-to-HTML parsing. This approach, however, (1) does not scale to very large amounts ofdata and (2) does not correctly expand macros in historical article revisions. We solve these problems by developing a parallelized architecture for parsing massive amounts of wikitext using local instances of MediaWiki, enhanced with the capacity of correct historical macro expansion. By deploying our system, we produce and release WikiHist.html, English Wikipedia's full revision history in HTML format. We highlight the advantages of WikiHist.html over raw wikitext in an empirical analysis of Wikipedia's hyperlinks, showing that over half of the wiki links present in HTML are missing from raw wikitext and that the missing links are important for user navigation.


翻译:维基百科用维基文本标记语言写成 维基百科。 当提供内容时, 维基百科的MediaWikiki 软件将维基文本缩入 HTML, 从而通过扩展宏( 模板和模块模块) 插入更多内容。 因此, 打算分析读者所看到的维基百科的研究人员应该使用 HTML, 而不是 wiki text 。 由于维基百科的修订历史完全以维基百科格式公开提供, 研究人员不得不自己制作 HTML, 通常使用 维基百科的 REST API 进行 ad- hoc wikitext 到 HTML 解析。 但是, 这个方法, (1) 不至非常大的数据量和 (2) 不正确扩展历史文章修改中的宏。 因此, 我们通过开发一个平行的架构来分析, 利用本地的MediaWikiki 来区分大量维基文本, 并辅之以正确的历史宏观扩展能力。 通过部署我们的系统, 我们制作并发布和发布WikiHTML格式的完整订正历史历史历史。 我们强调的原始维基文本中的重要链接的半链接, 展示了Wikist.html的原始维基文本的优势。

0
下载
关闭预览

相关内容

维基百科( Wikipedia.org)是一个基于 Wiki 技术的全球性多语言百科全书协作项目,同时也是一部在网际网络上呈现的网络百科全书网站,其目标及宗旨是为全人类提供自由的百科全书。目前 Alexa 全球网站排名第六。
Python计算导论,560页pdf,Introduction to Computing Using Python
专知会员服务
74+阅读 · 2020年5月5日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
195+阅读 · 2019年10月10日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
已删除
AI掘金志
7+阅读 · 2019年7月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Arxiv
6+阅读 · 2019年9月4日
Semantics of Data Mining Services in Cloud Computing
Arxiv
4+阅读 · 2018年10月5日
Arxiv
6+阅读 · 2018年1月29日
Arxiv
3+阅读 · 2017年12月18日
VIP会员
相关VIP内容
Python计算导论,560页pdf,Introduction to Computing Using Python
专知会员服务
74+阅读 · 2020年5月5日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
195+阅读 · 2019年10月10日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
相关资讯
已删除
AI掘金志
7+阅读 · 2019年7月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Top
微信扫码咨询专知VIP会员