This paper proposes a tool for dimension reduction where the dimension of the original space is reduced: a Principal Loading Analysis (PLA). PLA is a tool to reduce dimensions by discarding variables. The intuition is that variables are dropped which distort the covariance matrix only by a little. Our method is introduced and an algorithm for conducting PLA is provided. Further, we give bounds for the noise arising in the sample case.
翻译:本文建议了在减少原有空间的维度时减少维度的工具:主要载荷分析(PLA) 。 PLA 是一种通过丢弃变量来减少维度的工具。 直觉是,变量被丢弃, 只会稍微扭曲共变矩阵。 我们采用了我们的方法, 提供了进行PLA的算法 。 此外, 我们给样本中产生的噪音打上界限 。