Nighttime photographers are often troubled by light pollution of unwanted artificial lights. Artificial lights, after scattered by aerosols in the atmosphere, can inundate the starlight and degrade the quality of nighttime images, by reducing contrast and dynamic range and causing hazes. In this paper we develop a physically-based light pollution reduction (LPR) algorithm that can substantially alleviate the aforementioned degradations of perceptual quality and restore the pristine state of night sky. The key to the success of the proposed LPR algorithm is an inverse method to estimate the spatial radiance distribution and spectral signature of ground artificial lights. Extensive experiments are carried out to evaluate the efficacy and limitations of the LPR algorithm.


翻译:夜间摄影师经常因不需要的人工照明受到轻光污染而烦恼,人工照明在大气中被气溶胶散布之后,通过减少对比和动态范围并造成烟雾,能够使星光全天化,降低夜间图像的质量,降低亮度和动态范围,并造成烟雾。在本文件中,我们开发了一种基于物理的光污染减少算法,可以大大减轻上述感官质量的退化,恢复夜间天空的原始状态。拟议的LPR算法的成功关键在于一种反向方法,用以估计地面人造灯的空间亮度分布和光谱特征。我们进行了广泛的实验,以评估LPR算法的功效和局限性。

0
下载
关闭预览

相关内容

iOS 8 提供的应用间和应用跟系统的功能交互特性。
  • Today (iOS and OS X): widgets for the Today view of Notification Center
  • Share (iOS and OS X): post content to web services or share content with others
  • Actions (iOS and OS X): app extensions to view or manipulate inside another app
  • Photo Editing (iOS): edit a photo or video in Apple's Photos app with extensions from a third-party apps
  • Finder Sync (OS X): remote file storage in the Finder with support for Finder content annotation
  • Storage Provider (iOS): an interface between files inside an app and other apps on a user's device
  • Custom Keyboard (iOS): system-wide alternative keyboards

Source: iOS 8 Extensions: Apple’s Plan for a Powerful App Ecosystem
《机器学习思维导图》,一图掌握机器学习知识要点
专知会员服务
68+阅读 · 2021年1月12日
【浙江大学】计算摄影学 (Computational Photography)课程
专知会员服务
25+阅读 · 2020年12月26日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
2018机器学习开源资源盘点
专知
6+阅读 · 2019年2月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Facebook PyText 在 Github 上开源了
AINLP
7+阅读 · 2018年12月14日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【推荐】视频目标分割基础
机器学习研究会
9+阅读 · 2017年9月19日
VIP会员
相关VIP内容
《机器学习思维导图》,一图掌握机器学习知识要点
专知会员服务
68+阅读 · 2021年1月12日
【浙江大学】计算摄影学 (Computational Photography)课程
专知会员服务
25+阅读 · 2020年12月26日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
2018机器学习开源资源盘点
专知
6+阅读 · 2019年2月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Facebook PyText 在 Github 上开源了
AINLP
7+阅读 · 2018年12月14日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【推荐】视频目标分割基础
机器学习研究会
9+阅读 · 2017年9月19日
Top
微信扫码咨询专知VIP会员