Binary neural networks (BNNs), where both weights and activations are binarized into 1 bit, have been widely studied in recent years due to its great benefit of highly accelerated computation and substantially reduced memory footprint that appeal to the development of resource constrained devices. In contrast to previous methods tending to reduce the quantization error for training BNN structures, we argue that the binarized convolution process owns an increasing linearity towards the target of minimizing such error, which in turn hampers BNN's discriminative ability. In this paper, we re-investigate and tune proper non-linear modules to fix that contradiction, leading to a strong baseline which achieves state-of-the-art performance on the large-scale ImageNet dataset in terms of accuracy and training efficiency. To go further, we find that the proposed BNN model still has much potential to be compressed by making a better use of the efficient binary operations, without losing accuracy. In addition, the limited capacity of the BNN model can also be increased with the help of group execution. Based on these insights, we are able to improve the baseline with an additional 4~5% top-1 accuracy gain even with less computational cost. Our code will be made public at https://github.com/zhuogege1943/ftbnn.


翻译:近几年来,由于高速计算和大量减少记忆足迹带来的巨大好处,近年来对重力和活性被二分制成1位数的双线神经网络进行了广泛研究。与以往倾向于减少用于培训BNN结构的量化错误的方法相比,我们认为,二进制神经网络进程在尽量减少这种错误的目标方面具有越来越大的分界线性,这反过来又妨碍了BNN的偏向能力。在本文中,我们重新对适当的非线性模块进行重新调查并调整,以纠正这一矛盾,从而形成一个强大的基线,在大规模图像网络数据集中实现最先进的精确性能和培训效率。此外,我们发现,拟议的BNNN模型仍然有很大潜力通过更好地使用高效的二进制操作进行压缩,而不会失去准确性。此外,BNN模型的有限能力也可以随着集体执行的帮助而增加。基于这些洞察,我们甚至能够以4~5 %/1的顶级计算法来改进大规模图像网络数据库的精确性能。我们将在4~5%的顶级计算上降低我们的成本。

0
下载
关闭预览

相关内容

专知会员服务
124+阅读 · 2020年9月8日
专知会员服务
27+阅读 · 2020年2月15日
专知会员服务
117+阅读 · 2019年12月24日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
深度卷积神经网络中的降采样
极市平台
12+阅读 · 2019年5月24日
移动端机器学习资源合集
专知
8+阅读 · 2019年4月21日
AI/ML/DNN硬件加速设计怎么入门?
StarryHeavensAbove
10+阅读 · 2018年12月4日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【CNN】一文读懂卷积神经网络CNN
产业智能官
18+阅读 · 2018年1月2日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
Arxiv
0+阅读 · 2020年12月2日
Arxiv
8+阅读 · 2018年11月21日
Arxiv
6+阅读 · 2018年1月29日
VIP会员
相关资讯
深度卷积神经网络中的降采样
极市平台
12+阅读 · 2019年5月24日
移动端机器学习资源合集
专知
8+阅读 · 2019年4月21日
AI/ML/DNN硬件加速设计怎么入门?
StarryHeavensAbove
10+阅读 · 2018年12月4日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【CNN】一文读懂卷积神经网络CNN
产业智能官
18+阅读 · 2018年1月2日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
Top
微信扫码咨询专知VIP会员