Ground penetrating radar mounted on a small unmanned aerial vehicle (UAV) is a promising tool to assist humanitarian landmine clearance. However, the quality of synthetic aperture radar images depends on accurate and precise motion estimation of the radar antennas as well as generating informative viewpoints with the UAV. This paper presents a complete and automatic airborne ground-penetrating synthetic aperture radar (GPSAR) system. The system consists of a spatially calibrated and temporally synchronized industrial grade sensor suite that enables navigation above ground level, radar imaging, and optical imaging. A custom mission planning framework allows generation and automatic execution of stripmap and circular GPSAR trajectories controlled above ground level as well as aerial imaging survey flights. A factor graph based state estimator fuses measurements from dual receiver real-time kinematic (RTK) global navigation satellite system (GNSS) and an inertial measurement unit (IMU) to obtain precise, high rate platform positions and orientations. Ground truth experiments showed sensor timing as accurate as 0.8 {\mu}s and as precise as 0.1 {\mu}s with localization rates of 1 kHz. The dual position factor formulation improves online localization accuracy up to 40 % and batch localization accuracy up to 59 % compared to a single position factor with uncertain heading initialization. Our field trials validated a localization accuracy and precision that enables coherent radar measurement addition and detection of radar targets buried in sand. This validates the potential as an aerial landmine detection system.


翻译:安装在小型无人驾驶航空器(无人驾驶飞行器)上的地面穿透雷达是一个很有希望的工具,有助于人道主义排雷,然而,合成孔径雷达图像的质量取决于对雷达天线的准确和精确的动作估计,以及与无人驾驶飞行器产生信息观点。本文件介绍了一个完整和自动的空中地面穿透合成孔径雷达系统(GPSAR),该系统包括一个空间校准和时间同步的工业级传感器套件,该套套套件能够进行地面以上导航、雷达成像和光学成像。一个定制任务规划框架允许生成和自动执行地面以上控制的脱衣和循环的GPSAR轨迹以及空中成像调查飞行。基于要素的州测深器引信测量基于双接收实时运动(RTK)全球导航卫星系统(GNSS)和惯性测量单元(IMU),以获得精确、高率的平台位置和方向。地面实况实验显示传感器的时间安排准确度为0.8 和精确度为0.1 轨道化速度为1 kHz。一个基于要素的州级测点的州测点,将实地测定的实地测度定位,比为实地测点,以实地测测到实地测测点,以实地测点,以实地测点和实地测点的初始测点,比为实地测点,以实地测测点,以实地测测点为5分点。

0
下载
关闭预览

相关内容

【图与几何深度学习】Graph and geometric deep learning,49页ppt
专知会员服务
44+阅读 · 2020年10月31日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
48+阅读 · 2020年7月4日
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
已删除
将门创投
3+阅读 · 2019年4月19日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Object detection on aerial imagery using CenterNet
Arxiv
6+阅读 · 2019年8月22日
Joint Monocular 3D Vehicle Detection and Tracking
Arxiv
8+阅读 · 2018年12月2日
Arxiv
5+阅读 · 2018年10月4日
VIP会员
相关资讯
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
已删除
将门创投
3+阅读 · 2019年4月19日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Top
微信扫码咨询专知VIP会员