Self-driving vehicles are expected to bring many benefits among which enhancing traffic efficiency and relia-bility, and reducing fuel consumption which would have a great economical and environmental impact. The success of this technology heavily relies on the full situational awareness of its surrounding entities. This is achievable only when everything is networked, including vehicles, users and infrastructure, and exchange the sensed data among the nearby objects to increase their awareness. Nevertheless, human intervention is still needed in the loop anyway to deal with unseen situations or compensate for inaccurate or improper vehicle's decisions. For such cases, video feed, in addition to other data such as LIDAR, is considered essential to provide humans with the real picture of what is hap-pening to eventually take the right decision. However, if the video is not delivered in a timely fashion,it becomes useless or likely produce catastrophic outcomes. Additionally, any disruption in the streamed video, for instance during handover operation while traversing inter-countries cross borders, is very annoying to the user and possibly ause damages as well. In this article, we start by describing two important use cases, namely Remote Driving and Platooning, where the timely delivery of video is of extreme importance [1]. Thereafter, we detail our implemented solution to accommodate the aforementioned use cases for self-driving vehicles. Through extensive experiments in local and LTE networks, we show that our solution ensures a very low end-to-end latency. Also, we show that our solution keeps the video outage as low as possible during handover operation.


翻译:自行驾驶的车辆预计将带来许多好处,其中包括提高交通效率和恢复能力,减少燃料消耗,从而产生巨大的经济和环境影响。这一技术的成功在很大程度上取决于周围实体对形势的充分认识。这只有在包括车辆、用户和基础设施在内的所有东西都联网,并在附近物体之间交换感知数据以提高其认识的情况下才能实现。然而,在回路中仍然需要人手干预,以处理看不见的情况或补偿不准确或不当车辆的决定。对于这种情况,除了LIDAR等其他数据外,视频传输被认为对于向人类提供真正了解最终做出正确决定所需的要素至关重要。然而,如果视频不能及时交付,则将变得毫无用处或可能产生灾难性的结果。此外,流视频的任何中断,例如,在交接操作期间,在跨国跨边界时,对用户非常烦扰,也可能造成使用损失。在文章中,我们首先描述两个重要的用途案例,即远程驾驶和平图,最终决定如何做出正确的决定。我们从远端的视频网络展示了我们最终的交付的重要性。

0
下载
关闭预览

相关内容

CASES:International Conference on Compilers, Architectures, and Synthesis for Embedded Systems。 Explanation:嵌入式系统编译器、体系结构和综合国际会议。 Publisher:ACM。 SIT: http://dblp.uni-trier.de/db/conf/cases/index.html
专知会员服务
60+阅读 · 2020年3月19日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年4月19日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员