Motivated by recent work involving the analysis of biomedical imaging data, we present a novel procedure for constructing simultaneous confidence corridors for the mean of imaging data. We propose to use flexible bivariate splines over triangulations to handle irregular domain of the images that is common in brain imaging studies and in other biomedical imaging applications. The proposed spline estimators of the mean functions are shown to be consistent and asymptotically normal under some regularity conditions. We also provide a computationally efficient estimator of the covariance function and derive its uniform consistency. The procedure is also extended to the two-sample case in which we focus on comparing the mean functions from two populations of imaging data. Through Monte Carlo simulation studies we examine the finite-sample performance of the proposed method. Finally, the proposed method is applied to analyze brain Positron Emission Tomography (PET) data in two different studies. One dataset used in preparation of this article was obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database.


翻译:根据最近涉及生物医学成像数据分析的工作,我们提出了一个新程序,用于为成象数据平均值同时建立信任走廊;我们提议使用三角图象上灵活的双变量样条,处理大脑成像研究和其他生物医学成像应用中常见的图像非正常域;在某种正常条件下,拟议中函数的样条估计显示是一致和无症状的;我们还提供计算效率高的共变函数估计器,并取得其统一一致性;该程序还扩大到两个样本案例,其中我们侧重于比较两个成象数据群的中值功能;我们通过蒙特卡洛模拟研究,我们研究了拟议方法的有限抽样性能;最后,在两个不同的研究中,将拟议方法用于分析脑波斯坦射电图学数据;从阿尔茨海默氏病神经成像学(ADNI)数据库获得一个用于撰写这一文章的数据集。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年7月29日
VIP会员
相关资讯
Top
微信扫码咨询专知VIP会员