Reed-Muller (RM) codes are known for their good maximum likelihood (ML) performance in the short block-length regime. Despite being one of the oldest classes of channel codes, finding a low complexity soft-input decoding scheme is still an open problem. In this work, we present a belief propagation (BP) decoding architecture for RM codes based on their rich automorphism group. The decoding algorithm can be seen as a generalization of multiple-bases belief propagation (MBBP) using polar BP as constituent decoders. We provide extensive error-rate performance simulations and compare our results to existing decoding schemes. We report a near-ML performance for the RM(3,7)-code (e.g., 0.05 dB away from the ML bound at BLER of $10^{-4}$) at a competitive computational cost. To the best of our knowledge, our proposed decoder achieves the best performance of all iterative RM decoders presented thus far.
翻译:Reed-Muler (RM) 代码因其在短长的区段系统中的极有可能(ML)性能而闻名于世。尽管它是最古老的频道代码类别之一,但发现低复杂性软投入编码方案仍然是一个尚未解决的问题。在这项工作中,我们提出了一个基于其丰富的自动形态组群的RM代码的信仰传播(BP)解码架构。解码算法可以被视为以极性BP作为构件解码器的多基信仰传播(MBBP)的一般化。我们提供了广泛的错误率性能模拟,并将我们的结果与现有的解码方案进行比较。我们报告RM(3,7)-代码(例如,0.05 dB)的接近ML(ML) 约束在10 ⁇ -4 美元BLER的MLER值之外,以竞争性计算成本运行。根据我们的知识,我们提议的解码算法实现了迄今为止所有迭代的 RMD解码员的最佳性能。