Systematic literature reviews play a vital role in identifying the best available evidence for health and social care policy. The resources required to produce systematic reviews can be significant, and a key to the success of any review is the search strategy used to identify relevant literature. However, the methods used to construct search strategies can be complex, time consuming, resource intensive and error prone. In this review, we examine the state of the art in resolving complex structured information needs, focusing primarily on the healthcare context. We analyse the literature to identify key challenges and issues and explore appropriate solutions and workarounds. From this analysis we propose a way forward to facilitate trust and transparency and to aid explainability, reproducibility and replicability through a set of key design principles for tools to support the development of search strategies in systematic literature reviews.


翻译:系统文献审查在为保健和社会护理政策确定现有最佳证据方面发挥着至关重要的作用。系统文献审查所需要的资源可能很重要,而任何审查取得成功的关键是用于确定相关文献的搜索战略。然而,用于制定搜索战略的方法可能复杂、耗时、资源密集和容易出错。在本次审查中,我们审查了解决复杂结构化信息需求方面的先进经验,主要侧重于卫生保健背景。我们分析了文献,以查明关键的挑战和问题,并探索适当的解决办法和变通办法。我们从这一分析中提出了促进信任和透明度的方法,并通过一套关键设计原则协助解释、可复制和可复制性,用于支持系统文献审查中的搜索战略的发展。

0
下载
关闭预览

相关内容

【如何做研究】How to research ,22页ppt
专知会员服务
108+阅读 · 2021年4月17日
可解释强化学习,Explainable Reinforcement Learning: A Survey
专知会员服务
129+阅读 · 2020年5月14日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
学术会议 | 知识图谱顶会 ISWC 征稿:Poster/Demo
开放知识图谱
5+阅读 · 2019年4月16日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
已删除
将门创投
9+阅读 · 2018年12月19日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
推荐|Andrew Ng计算机视觉教程总结
全球人工智能
3+阅读 · 2017年11月23日
VIP会员
相关VIP内容
【如何做研究】How to research ,22页ppt
专知会员服务
108+阅读 · 2021年4月17日
可解释强化学习,Explainable Reinforcement Learning: A Survey
专知会员服务
129+阅读 · 2020年5月14日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
学术会议 | 知识图谱顶会 ISWC 征稿:Poster/Demo
开放知识图谱
5+阅读 · 2019年4月16日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
已删除
将门创投
9+阅读 · 2018年12月19日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
推荐|Andrew Ng计算机视觉教程总结
全球人工智能
3+阅读 · 2017年11月23日
Top
微信扫码咨询专知VIP会员