We study the robustness of data-centric methods to find neural network architectures, known as neural architecture search (NAS), against data poisoning. To audit this robustness, we design a poisoning framework that enables the systematic evaluation of the ability of NAS to produce architectures under data corruption. Our framework examines four off-the-shelf NAS algorithms, representing different approaches to architecture discovery, against four data poisoning attacks, including one we tailor specifically for NAS. In our evaluation with the CIFAR-10 and CIFAR-100 benchmarks, we show that NAS is \emph{seemingly} robust to data poisoning, showing marginal accuracy drops even under large poisoning budgets. However, we demonstrate that when considering NAS algorithms designed to achieve a few percentage points of accuracy gain, this expected improvement can be substantially diminished under data poisoning. We also show that the reduction varies across NAS algorithms and analyze the factors contributing to their robustness. Our findings are: (1) Training-based NAS algorithms are the least robust due to their reliance on data. (2) Training-free NAS approaches are the most robust but produce architectures that perform similarly to random selections from the search space. (3) NAS algorithms can produce architectures with improved accuracy, even when using out-of-distribution data like MNIST. We lastly discuss potential countermeasures. Our code is available at: https://github.com/ztcoalson/NAS-Robustness-to-Data-Poisoning
翻译:本研究探讨了以数据为中心寻找神经网络架构的方法——即神经架构搜索(NAS)——在面临数据投毒攻击时的鲁棒性。为评估其鲁棒性,我们设计了一个投毒框架,能够系统性地评估NAS在数据污染条件下生成架构的能力。该框架针对四种现成的NAS算法(代表了不同的架构发现方法)测试了四种数据投毒攻击,其中一种是我们专门为NAS量身定制的攻击。在基于CIFAR-10和CIFAR-100基准的评估中,我们发现NAS在数据投毒下表现出表面上的鲁棒性,即使在高投毒预算下精度下降也较小。然而,我们证明当考虑那些旨在提升几个百分点精度的NAS算法时,这种预期的改进在数据投毒下会被显著削弱。我们还发现精度降低的程度因NAS算法而异,并分析了影响其鲁棒性的因素。我们的主要发现包括:(1)基于训练的NAS算法由于对数据的依赖最强,鲁棒性最差。(2)免训练的NAS方法鲁棒性最高,但其生成的架构性能与从搜索空间中随机选择的架构相近。(3)即使使用MNIST等分布外数据,NAS算法仍能生成具有更高精度的架构。最后,我们讨论了潜在的防御措施。相关代码已开源:https://github.com/ztcoalson/NAS-Robustness-to-Data-Poisoning