Sharing short personalized videos to various social media networks has become quite popular in recent years. This raises the need for digital retouching of portraits in videos. However, applying portrait image editing directly on portrait video frames cannot generate smooth and stable video sequences. To this end, we present a robust and easy-to-use parametric method to reshape the portrait in a video to produce smooth retouched results. Given an input portrait video, our method consists of two main stages: stabilized face reconstruction, and continuous video reshaping. In the first stage, we start by estimating face rigid pose transformations across video frames. Then we jointly optimize multiple frames to reconstruct an accurate face identity, followed by recovering face expressions over the entire video. In the second stage, we first reshape the reconstructed 3D face using a parametric reshaping model reflecting the weight change of the face, and then utilize the reshaped 3D face to guide the warping of video frames. We develop a novel signed distance function based dense mapping method for the warping between face contours before and after reshaping, resulting in stable warped video frames with minimum distortions. In addition, we use the 3D structure of the face to correct the dense mapping to achieve temporal consistency. We generate the final result by minimizing the background distortion through optimizing a content-aware warping mesh. Extensive experiments show that our method is able to create visually pleasing results by adjusting a simple reshaping parameter, which facilitates portrait video editing for social media and visual effects.
翻译:与各种社交媒体网络分享个人化视频的简短个人化视频近年来已变得相当受欢迎。 这就使得在视频框架中对肖像进行数字调整的必要性变得非常普遍。 但是,直接在肖像视频框架上应用肖像图像编辑无法产生光滑和稳定的视频序列。 为此,我们展示了一种强大和容易使用的参数性方法,在视频中重塑肖像,以产生平滑的感触结果。 根据一个投入的肖像视频,我们的方法由两个主要阶段组成:稳定的面部重建、连续的视频重塑。在第一阶段,我们首先估计面部僵硬的图像结构在视频框架中的变形。然后,我们共同优化多个框架,以重建准确的面部形象身份,随后恢复整个视频视频的面部表达方式。在第二阶段,我们首先使用一个反映面部变形变形的微模型来重新塑造3D脸部的面部面部,然后利用重新组合的3D面部面部图像来引导视频框架的扭曲。 我们开发了基于面部变形和后变形结构的粗的远程绘图功能, 导致稳定的媒体变形结构与最低变形的图像框架,我们用最精确的变形的变形方法来进行最精确的变形。 我们用最精确的变形方法来调整了一个最深的图像的图像结构, 以最深的变形的变形的变形的变形的变形的图图制。