This paper investigates the information freshness of two-way relay networks (TWRN) operated with physical-layer network coding (PNC). Information freshness is quantified by age of information (AoI), defined as the time elapsed since the generation time of the latest received information update. PNC reduces communication latency of TWRNs by turning superimposed electromagnetic waves into network-coded messages so that end users can send update packets to each other via the relay more frequently. Although sending update packets more frequently is potential to reduce AoI, how to deal with packet corruption has not been well investigated. Specifically, if old packets are corrupted in any hop of a TWRN, one needs to decide the old packets to be dropped or to be retransmitted, e.g., new packets have recent information, but may require more time to be delivered. We study the average AoI with and without ARQ in PNC-enabled TWRNs. We first consider a non-ARQ scheme where old packets are always dropped when corrupted, referred to once-lost-then-drop (OLTD), and a classical ARQ scheme with no packet lost, referred to as reliable packet transmission (RPT). Interestingly, our analysis shows that neither the non-ARQ scheme nor the pure ARQ scheme achieves good average AoI. We then put forth an uplink-lost-then-drop (ULTD) protocol that combines packet drop and ARQ. Experiments on software-defined radio indicate that ULTD significantly outperforms OLTD and RPT in terms of average AoI. Although this paper focuses on TWRNs, we believe the insight of ULTD applies generally to other two-hop networks. Our insight is that to achieve high information freshness, when packets are corrupted in the first hop, new packets should be generated and sent (i.e., old packets are discarded); when packets are corrupted in the second hop, old packets should be retransmitted until successful reception.


翻译:本文调查双向中继网络( TWRN) 以物理层网络编码( PPC ) 运行的双向中继网络( TWRN ) 的信息新鲜度。 信息新鲜度以信息年代( AOI) 量化, 定义是最新收到信息更新的生成时间。 PNC 将超级电磁波转换成网络编码信息, 从而降低 TWRN 的通信延迟度, 以便终端用户能够更经常地通过转发方式向对方发送更新信息包。 尽管发送更新信息包可能会减少 AOI, 如何处理包腐败问题没有很好地调查 。 具体地说, 如果旧数据包在任何 TWRN 的版本中被损坏, 人们需要决定旧信息要丢弃或重新传送旧信息。 我们的 OFI 和 将旧数据存储器在旧数据流中总是丢失, 将旧数据存储的 RVD 提交给了我们的 ASQ 平均版本, 显示我们的平均版本是正常的 。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
多标签学习的新趋势(2020 Survey)
专知会员服务
41+阅读 · 2020年12月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
简明扼要!Python教程手册,206页pdf
专知会员服务
47+阅读 · 2020年3月24日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】卷积神经网络类间不平衡问题系统研究
机器学习研究会
6+阅读 · 2017年10月18日
Highway Networks For Sentence Classification
哈工大SCIR
4+阅读 · 2017年9月30日
【推荐】视频目标分割基础
机器学习研究会
9+阅读 · 2017年9月19日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年9月13日
Arxiv
3+阅读 · 2020年4月29日
Arxiv
3+阅读 · 2017年10月1日
VIP会员
相关VIP内容
多标签学习的新趋势(2020 Survey)
专知会员服务
41+阅读 · 2020年12月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
简明扼要!Python教程手册,206页pdf
专知会员服务
47+阅读 · 2020年3月24日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
相关资讯
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】卷积神经网络类间不平衡问题系统研究
机器学习研究会
6+阅读 · 2017年10月18日
Highway Networks For Sentence Classification
哈工大SCIR
4+阅读 · 2017年9月30日
【推荐】视频目标分割基础
机器学习研究会
9+阅读 · 2017年9月19日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员