One of the most popular clustering algorithms is the celebrated $D^\alpha$ seeding algorithm (also know as $k$-means++ when $\alpha=2$) by Arthur and Vassilvitskii (2007), who showed that it guarantees in expectation an $O(2^{2\alpha}\cdot \log k)$-approximate solution to the ($k$,$\alpha$)-means cost (where euclidean distances are raised to the power $\alpha$) for any $\alpha\ge 1$. More recently, Balcan, Dick, and White (2018) observed experimentally that using $D^\alpha$ seeding with $\alpha>2$ can lead to a better solution with respect to the standard $k$-means objective (i.e. the $(k,2)$-means cost). In this paper, we provide a rigorous understanding of this phenomenon. For any $\alpha>2$, we show that $D^\alpha$ seeding guarantees in expectation an approximation factor of $$ O_\alpha \left((g_\alpha)^{2/\alpha}\cdot \left(\frac{\sigma_{\mathrm{max}}}{\sigma_{\mathrm{min}}}\right)^{2-4/\alpha}\cdot (\min\{\ell,\log k\})^{2/\alpha}\right)$$ with respect to the standard $k$-means cost of any underlying clustering; where $g_\alpha$ is a parameter capturing the concentration of the points in each cluster, $\sigma_{\mathrm{max}}$ and $\sigma_{\mathrm{min}}$ are the maximum and minimum standard deviation of the clusters around their means, and $\ell$ is the number of distinct mixing weights in the underlying clustering (after rounding them to the nearest power of $2$). We complement these results by some lower bounds showing that the dependency on $g_\alpha$ and $\sigma_{\mathrm{max}}/\sigma_{\mathrm{min}}$ is tight. Finally, we provide an experimental confirmation of the effects of the aforementioned parameters when using $D^\alpha$ seeding. Further, we corroborate the observation that $\alpha>2$ can indeed improve the $k$-means cost compared to $D^2$ seeding, and that this advantage remains even if we run Lloyd's algorithm after the seeding.


翻译:暂无翻译

0
下载
关闭预览

相关内容

专知会员服务
33+阅读 · 2021年3月7日
ExBert — 可视化分析Transformer学到的表示
专知会员服务
32+阅读 · 2019年10月16日
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
可解释AI(XAI)工具集—DrWhy
专知
25+阅读 · 2019年6月4日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
Layer Normalization原理及其TensorFlow实现
深度学习每日摘要
32+阅读 · 2017年6月17日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2023年12月5日
VIP会员
相关资讯
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
可解释AI(XAI)工具集—DrWhy
专知
25+阅读 · 2019年6月4日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
Layer Normalization原理及其TensorFlow实现
深度学习每日摘要
32+阅读 · 2017年6月17日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员