Recent advances in large language models (LLMs) offer new opportunities for scalable, interactive mental health assessment, but excessive querying by LLMs burdens users and is inefficient for real-world screening across transdiagnostic symptom profiles. We introduce MAQuA, an adaptive question-asking framework for simultaneous, multidimensional mental health screening. Combining multi-outcome modeling on language responses with item response theory (IRT) and factor analysis, MAQuA selects the questions with most informative responses across multiple dimensions at each turn to optimize diagnostic information, improving accuracy and potentially reducing response burden. Empirical results on a novel dataset reveal that MAQuA reduces the number of assessment questions required for score stabilization by 50-87% compared to random ordering (e.g., achieving stable depression scores with 71% fewer questions and eating disorder scores with 85% fewer questions). MAQuA demonstrates robust performance across both internalizing (depression, anxiety) and externalizing (substance use, eating disorder) domains, with early stopping strategies further reducing patient time and burden. These findings position MAQuA as a powerful and efficient tool for scalable, nuanced, and interactive mental health screening, advancing the integration of LLM-based agents into real-world clinical workflows.
翻译:大型语言模型(LLMs)的最新进展为可扩展、交互式的心理健康评估提供了新机遇,但LLMs的过度提问会增加用户负担,且对于跨诊断症状谱的真实世界筛查效率低下。我们提出了MAQuA,一种用于同步多维度心理健康筛查的自适应提问框架。该方法结合了对语言响应的多结果建模、项目反应理论(IRT)和因子分析,在每一轮选择对多个维度最具信息量的响应问题,以优化诊断信息,从而提高准确性并可能减轻回答负担。基于新数据集的实证结果表明,与随机排序相比,MAQuA将评分稳定所需的评估问题数量减少了50-87%(例如,抑郁评分稳定所需问题减少71%,进食障碍评分稳定所需问题减少85%)。MAQuA在内化维度(抑郁、焦虑)和外化维度(物质使用、进食障碍)均表现出稳健性能,早期停止策略进一步减少了患者时间和负担。这些发现表明MAQuA是一种强大而高效的工具,可用于可扩展、细致且交互式的心理健康筛查,推动了基于LLM的智能体与真实世界临床工作流程的融合。