This study introduces the Spatial Health and Population Estimator (SHAPE), a spatial microsimulation framework that applies hierarchical iterative proportional fitting (IPF) to estimate two health risk behaviors and eleven health outcomes across multiple spatial scales. SHAPE was evaluated using county-level direct estimates from the Behavioral Risk Factor Surveillance System (BRFSS) and both county and census tract level data from CDC PLACES for New York (2021) and Florida (2019). Results show that SHAPE's SAEs are moderately consistent with BRFSS (average Pearson's correlation coefficient r of about 0.5), similar to CDC PLACES (average r of about 0.6), and are strongly aligned with CDC PLACES model-based estimates at both county (average r of about 0.8) and census tract (average r of about 0.7) levels. SHAPE is an open, reproducible, and transparent framework programmed in R that meets a need for accessible SAE methods in public health.
翻译:本研究介绍了空间健康与人口估计器(SHAPE)——一种应用分层迭代比例拟合(IPF)的空间微观模拟框架,用于在多个空间尺度上估计两种健康风险行为和十一种健康结果。SHAPE的评估使用了来自行为风险因素监测系统(BRFSS)的县级直接估计值,以及来自CDC PLACES的纽约(2021年)和佛罗里达(2019年)县级和人口普查区级数据。结果表明,SHAPE的小区域估计(SAE)与BRFSS数据具有中等程度的一致性(平均皮尔逊相关系数r约为0.5),与CDC PLACES数据相似(平均r约为0.6),并且在县级(平均r约为0.8)和人口普查区级(平均r约为0.7)均与CDC PLACES的模型估计值高度吻合。SHAPE是一个用R语言编程的开放、可复现且透明的框架,满足了公共卫生领域对小区域估计方法可及性的需求。