This paper describes the third Affective Behavior Analysis in-the-wild (ABAW) Competition, held in conjunction with IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), 2022. The 3rd ABAW Competition is a continuation of the Competitions held at ICCV 2021, IEEE FG 2020 and IEEE CVPR 2017 Conferences, and aims at automatically analyzing affect. This year the Competition encompasses four Challenges: i) uni-task Valence-Arousal Estimation, ii) uni-task Expression Classification, iii) uni-task Action Unit Detection, and iv) Multi-Task-Learning. All the Challenges are based on a common benchmark database, Aff-Wild2, which is a large scale in-the-wild database and the first one to be annotated in terms of valence-arousal, expressions and action units. In this paper, we present the four Challenges, with the utilized Competition corpora, we outline the evaluation metrics and present the baseline systems along with their obtained results.
翻译:本文介绍了与IEEE国际计算机远景和模式识别会议(CVPR)联合举行的第三次Affive性行为分析(ABAW)竞争,2022年。第三次ABAW竞争是2021年ICCV、2020年IEEE FG和2017年IEEE CVPR会议举行的竞争的继续,目的是自动分析影响。今年,竞争包括四项挑战:一) 单项任务价值-激励性刺激,二) 单项任务表达分类,三) 单项任务表达行动组探测,四) 多任务学习。所有挑战都基于一个共同的基准数据库,Aff-Wild2,这是一个大型的网上数据库,第一个是价值激励、表达和行动单位的说明。我们在本文件中介绍了四项挑战,利用了竞争公司,我们概述了评价指标,并介绍了基线系统及其所获结果。