MaskGAN opens the query for the conditional language model by filling in the blanks between the given tokens. In this paper, we focus on addressing the limitations caused by having to specify blanks to be filled. We decompose conditional text generation problem into two tasks, make-a-blank and fill-in-the-blank, and extend the former to handle more complex manipulations on the given tokens. We cast these tasks as a hierarchical multi agent RL problem and introduce a conditional adversarial learning that allows the agents to reach a goal, producing realistic texts, in cooperative setting. We show that the proposed model not only addresses the limitations but also provides good results without compromising the performance in terms of quality and diversity.
翻译:MaskGAN 通过填充给定标牌之间的空白打开有条件语言模式的查询。 在本文中, 我们侧重于解决因必须指定要填满的空白而带来的限制。 我们将有条件文本生成问题分解为两项任务, 即制造空白和填充空白, 并将前者扩展为处理给定标牌上更复杂的操作。 我们将这些任务作为一个等级化的多级代理RL问题, 并引入一个有条件的对抗性学习, 使代理商在合作环境中达到一个目标, 产生现实文本。 我们显示, 拟议的模式不仅解决了限制, 而且还在不损害质量和多样性方面表现的情况下提供了良好的效果 。