In this paper, we propose an effective computational approach to analyze and active control of geometrically nonlinear responses of functionally graded (FG) porous plates with graphene nanoplatelets (GPLs) reinforcement integrated with piezoelectric layers. The key concept behind this work is to utilize isogeometric analysis (IGA) based on B\'ezier extraction technique and $C^0$-type higher-order shear deformation theory ($C^0$-HSDT). By applying B\'ezier extraction, the original Non-Uniform Rational B-Spline (NURBS) control meshes can be transformed into B\'ezier elements which allow us to inherit the standard numerical procedure like the standard finite element method (FEM). In this scenario, the approximation of mechanical displacement field is calculated via $C^0$-HSDT whilst the electric potential field is considered as a linear function across the thickness of each piezoelectric sublayer. The FG plate includes internal pores and GPLs dispersed into metal matrix either uniformly or non-uniformly along plate's thickness. To control responses of structures, the top and bottom surfaces of FG plate are firmly bonded with piezoelectric layers which are considered as sensor and actuator layers. The geometrically nonlinear equations are solved by Newton-Raphson iterative procedure and Newmark's integration. The influence of porosity coefficient, weight fraction of GPLs as well as external electrical voltage on geometrically nonlinear behaviors of plate structures with various distributions of porosity and GPLs are thoroughly investigated. A constant displacement and velocity feedback control approaches are then adopted to actively control geometrically nonlinear static and dynamic responses, where structural damping effect is taken into account, based on a closed-loop control with sensor and actuator layers.


翻译:暂无翻译

0
下载
关闭预览

相关内容

International Conference on Automatic Face and Gesture Recognition是研究基于图像和视频的人脸、手势和身体运动识别的首要国际论坛。其广泛的范围包括:计算机视觉、模式识别和计算机图形学的基础进展;与面部、手势和身体运动相关的机器学习技术;新的算法和应用。官网链接:http://fg2019.org/
专知会员服务
53+阅读 · 2020年3月16日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
论文浅尝 | 利用 RNN 和 CNN 构建基于 FreeBase 的问答系统
开放知识图谱
11+阅读 · 2018年4月25日
论文 | YOLO(You Only Look Once)目标检测
七月在线实验室
14+阅读 · 2017年12月12日
Layer Normalization原理及其TensorFlow实现
深度学习每日摘要
32+阅读 · 2017年6月17日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
36+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
VIP会员
相关VIP内容
专知会员服务
53+阅读 · 2020年3月16日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
论文浅尝 | 利用 RNN 和 CNN 构建基于 FreeBase 的问答系统
开放知识图谱
11+阅读 · 2018年4月25日
论文 | YOLO(You Only Look Once)目标检测
七月在线实验室
14+阅读 · 2017年12月12日
Layer Normalization原理及其TensorFlow实现
深度学习每日摘要
32+阅读 · 2017年6月17日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
36+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员