Exploration is an important step in autonomous navigation of robotic systems. In this paper we introduce a series of enhancements for exploration algorithms in order to use them with vision-based simultaneous localization and mapping (vSLAM) methods. We evaluate developed approaches in photo-realistic simulator in two modes: with ground-truth depths and neural network reconstructed depth maps as vSLAM input. We evaluate standard metrics in order to estimate exploration coverage.
翻译:探索是机器人系统自主导航的一个重要步骤。 在本文中,我们引入了一系列探索算法强化措施,以便用基于视觉的同步本地化和绘图方法(VSLAM)使用这些算法。我们用两种模式评估了摄影现实模拟器中开发出的方法:地面真相深度和神经网络重建深度地图作为VSLAM输入。我们评估标准测量标准,以估计勘探范围。