Current probabilistic programming languages and tools tightly couple model representations with specific inference algorithms, preventing experimentation with novel representations or mixed discrete-continuous models. We introduce a factor abstraction with five fundamental operations that serve as a universal interface for manipulating factors regardless of their underlying representation. This enables representation-agnostic probabilistic programming where users can freely mix different representations (e.g. discrete tables, Gaussians distributions, sample-based approaches) within a single unified framework, allowing practical inference in complex hybrid models that current toolkits cannot adequately express.


翻译:当前的概率编程语言和工具将模型表示与特定推理算法紧密耦合,阻碍了对新型表示或混合离散-连续模型的实验探索。我们引入了一种因子抽象,其包含五种基本操作,可作为操作因子的通用接口,而不受其底层表示形式的限制。这实现了表示无关的概率编程,用户可以在单一统一框架内自由混合不同表示形式(例如离散表格、高斯分布、基于采样的方法),从而在当前工具包无法充分表达的复杂混合模型中实现实用推理。

0
下载
关闭预览

相关内容

【NeurIPS2023】CQM: 与量化世界模型的课程强化学习
专知会员服务
25+阅读 · 2023年10月29日
专知会员服务
22+阅读 · 2021年10月8日
专知会员服务
12+阅读 · 2021年6月20日
【NAACL2021】信息解缠正则化持续学习的文本分类
专知会员服务
22+阅读 · 2021年4月11日
【ICML2021】因果匹配领域泛化
专知
12+阅读 · 2021年8月12日
Spark机器学习:矩阵及推荐算法
LibRec智能推荐
16+阅读 · 2017年8月3日
语义分割中的深度学习方法全解:从FCN、SegNet到DeepLab
炼数成金订阅号
26+阅读 · 2017年7月10日
MNIST入门:贝叶斯方法
Python程序员
23+阅读 · 2017年7月3日
国家自然科学基金
17+阅读 · 2017年12月31日
国家自然科学基金
9+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2025年12月30日
VIP会员
相关VIP内容
【NeurIPS2023】CQM: 与量化世界模型的课程强化学习
专知会员服务
25+阅读 · 2023年10月29日
专知会员服务
22+阅读 · 2021年10月8日
专知会员服务
12+阅读 · 2021年6月20日
【NAACL2021】信息解缠正则化持续学习的文本分类
专知会员服务
22+阅读 · 2021年4月11日
相关资讯
【ICML2021】因果匹配领域泛化
专知
12+阅读 · 2021年8月12日
Spark机器学习:矩阵及推荐算法
LibRec智能推荐
16+阅读 · 2017年8月3日
语义分割中的深度学习方法全解:从FCN、SegNet到DeepLab
炼数成金订阅号
26+阅读 · 2017年7月10日
MNIST入门:贝叶斯方法
Python程序员
23+阅读 · 2017年7月3日
相关基金
国家自然科学基金
17+阅读 · 2017年12月31日
国家自然科学基金
9+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员