Recent research has achieved impressive progress in the session-based recommendation. However, information such as item knowledge and click time interval, which could be potentially utilized to improve the performance, remains largely unexploited. In this paper, we propose a framework called Knowledge-enhanced Session-based Recommendation with Temporal Transformer (KSTT) to incorporate such information when learning the item and session embeddings. Specifically, a knowledge graph, which models contexts among items within a session and their corresponding attributes, is proposed to obtain item embeddings through graph representation learning. We introduce time interval embedding to represent the time pattern between the item that needs to be predicted and historical click, and use it to replace the position embedding in the original transformer (called temporal transformer). The item embeddings in a session are passed through the temporal transformer network to get the session embedding, based on which the final recommendation is made. Extensive experiments demonstrate that our model outperforms state-of-the-art baselines on four benchmark datasets.
翻译:最近的研究在届会建议中取得了令人印象深刻的进展,但是,项目知识和点击时间间隔等信息(有可能用来改进性能)基本上尚未开发。在本文件中,我们提议了一个称为“基于知识的强化会话建议与时间变换器(KSTT)”的框架,以便在学习项目和届会嵌入时纳入这类信息。具体地说,提议了一个知识图,用以模拟届会内各项目的背景及其相应的属性,以便通过图形演示学习获得项目嵌入。我们引入了时间间隔,以代表需要预测的项目与历史点击项目之间的时间模式,并用它取代原有变压器(称为时间变压器)的嵌入位置。一个会议嵌入的项目通过时间变压器网络通过时间变压器网络获得届会嵌入,并以此为基础提出最后建议。广泛的实验表明,我们的模型超过了四个基准数据集上的最新基线。