RooFit is a toolkit for statistical modelling and fitting, and together with RooStats it is used for measurements and statistical tests by most experiments in particle physics. Since one year, RooFit is being modernised. In this talk, improvements already released with ROOT will be discussed, such as faster data loading, vectorised computations and more standard-like interfaces. These allow for speeding up unbinned fits by several factors, and make RooFit easier to use from both C++ and Python.


翻译:RooFit是统计建模和装配的工具包,它与RooStats一起被大多数粒子物理实验用于测量和统计测试。自一年以来,RooFit正在现代化。在这个演讲中,将讨论已经通过ROOT释放的改进,如更快的数据加载、矢量计算和更标准的界面。这些可以加速不受几个因素的干扰,并使RooFit更容易从 C++ 和 Python 中使用。

0
下载
关闭预览

相关内容

【MIT干货书】机器学习算法视角,126页pdf
专知会员服务
78+阅读 · 2021年1月25日
专知会员服务
51+阅读 · 2020年12月14日
必须收藏!MIT-Gilbert老爷子《矩阵图解》,一张图看透矩阵
专知会员服务
124+阅读 · 2020年9月8日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
Arxiv
0+阅读 · 2021年2月5日
Arxiv
0+阅读 · 2021年2月4日
Arxiv
0+阅读 · 2021年2月4日
Do RNN and LSTM have Long Memory?
Arxiv
19+阅读 · 2020年6月10日
Arxiv
3+阅读 · 2017年12月14日
VIP会员
相关VIP内容
【MIT干货书】机器学习算法视角,126页pdf
专知会员服务
78+阅读 · 2021年1月25日
专知会员服务
51+阅读 · 2020年12月14日
必须收藏!MIT-Gilbert老爷子《矩阵图解》,一张图看透矩阵
专知会员服务
124+阅读 · 2020年9月8日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
Top
微信扫码咨询专知VIP会员