X-ray polarimetry will soon open a new window on the high energy universe with the launch of NASA's Imaging X-ray Polarimetry Explorer (IXPE). Polarimeters are currently limited by their track reconstruction algorithms, which typically use linear estimators and do not consider individual event quality. We present a modern deep learning method for maximizing the sensitivity of X-ray telescopic observations with imaging polarimeters, with a focus on the gas pixel detectors (GPDs) to be flown on IXPE. We use a weighted maximum likelihood combination of predictions from a deep ensemble of ResNets, trained on Monte Carlo event simulations. We derive and apply the optimal event weighting for maximizing the polarization signal-to-noise ratio (SNR) in track reconstruction algorithms. For typical power-law source spectra, our method improves on the current state of the art, providing a ~40% decrease in required exposure times for a given SNR.


翻译:X射线极地测量不久将随着美国航天局的X射线极地测量仪(IXPE)的发射,在高能宇宙上打开一个新的窗口。目前,极光仪受到其轨道重建算法的限制,这些算法通常使用线性测算器,而不考虑个别事件的质量。我们提出了一个现代深层次的学习方法,用成像极光来最大限度地提高X射线远程观测的灵敏度,重点是将发射在IXPE上的气体像素探测器(GPDs)。我们使用一种加权的最大可能性组合,结合了在蒙特卡洛事件模拟中受过训练的深层ResNet的预测。我们在轨重建算法中使用最佳事件加权权重,以尽量扩大极分线信号比。对于典型的电法源光谱,我们的方法改进了当前的技术状态,为特定的SNR提供了所需的接触时间的~40%。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
【CMU】最新深度学习课程, Introduction to Deep Learning
专知会员服务
37+阅读 · 2020年9月12日
数据科学导论,54页ppt,Introduction to Data Science
专知会员服务
42+阅读 · 2020年7月27日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
量化金融强化学习论文集合
专知
14+阅读 · 2019年12月18日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
学术会议 | 知识图谱顶会 ISWC 征稿:Poster/Demo
开放知识图谱
5+阅读 · 2019年4月16日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2022年1月6日
Arxiv
0+阅读 · 2022年1月5日
Arxiv
0+阅读 · 2022年1月3日
Deep Randomized Ensembles for Metric Learning
Arxiv
5+阅读 · 2018年9月4日
Arxiv
17+阅读 · 2018年4月2日
VIP会员
相关资讯
量化金融强化学习论文集合
专知
14+阅读 · 2019年12月18日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
学术会议 | 知识图谱顶会 ISWC 征稿:Poster/Demo
开放知识图谱
5+阅读 · 2019年4月16日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员