Spatiotemporal data mining (STDM) discovers useful patterns from the dynamic interplay between space and time. Several available surveys capture STDM advances and report a wealth of important progress in this field. However, STDM challenges and problems are not thoroughly discussed and presented in articles of their own. We attempt to fill this gap by providing a comprehensive literature survey on state-of-the-art advances in STDM. We describe the challenging issues and their causes and open gaps of multiple STDM directions and aspects. Specifically, we investigate the challenging issues in regards to spatiotemporal relationships, interdisciplinarity, discretisation, and data characteristics. Moreover, we discuss the limitations in the literature and open research problems related to spatiotemporal data representations, modelling and visualisation, and comprehensiveness of approaches. We explain issues related to STDM tasks of classification, clustering, hotspot detection, association and pattern mining, outlier detection, visualisation, visual analytics, and computer vision tasks. We also highlight STDM issues related to multiple applications including crime and public safety, traffic and transportation, earth and environment monitoring, epidemiology, social media, and Internet of Things.
翻译:空洞数据挖掘(STDM)发现时空数据挖掘(STDM)从空间和时间之间的动态相互作用中发现有用的模式。若干现有调查收集了STDM的进展并报告了该领域的丰富重要进展。然而,STDM的挑战和问题没有在自己的文章中进行彻底的讨论和介绍。我们试图通过对STDM的最新进展进行全面的文献调查来填补这一空白。我们描述了具有挑战性的问题及其根源以及STDM多种方向和方面的公开差距。具体地说,我们调查了与时空关系、相互差异、离散和数据特点有关的具有挑战性的问题。此外,我们还讨论了与STDM分类、集群、热点探测、关联和模式采矿、外部探测、视觉化、视觉分析以及计算机视觉任务等有关的文献和开放研究问题,以及与STDM任务有关的问题,包括犯罪和公共安全、交通和运输、地球和环境监测、流行病学、社会媒体和互联网等多种应用问题。我们还要强调STDM问题。