We study efficiency in a proof-of-work blockchain with non-zero latencies, focusing in particular on the (inequality in) individual miners' efficiencies. Prior work attributed differences in miners' efficiencies mostly to attacks, but we pursue a different question: Can inequality in miners' efficiencies be explained by delays, even when all miners are honest? Traditionally, such efficiency-related questions were tackled only at the level of the overall system, and in a peer-to-peer (P2P) setting where miners directly connect to one another. Despite it being common today for miners to pool compute capacities in a mining pool managed by a centralized coordinator, efficiency in such a coordinated setting has barely been studied. In this paper, we propose a simple model of a proof-of-work blockchain with latencies for both the P2P and the coordinated settings. We derive a closed-form expression for the efficiency in the coordinated setting with an arbitrary number of miners and arbitrary latencies, both for the overall system and for each individual miner. We leverage this result to show that inequalities arise from variability in the delays, but that if all miners are equidistant from the coordinator, they have equal efficiency irrespective of their compute capacities. We then prove that, under a natural consistency condition, the overall system efficiency in the P2P setting is higher than that in the coordinated setting. Finally, we perform a simulation-based study to demonstrate that even in the P2P setting delays between miners introduce inequalities, and that there is a more complex interplay between delays and compute capacities.


翻译:以往的工作把矿工效率的差别主要归咎于攻击,但我们追求一个不同的问题:即使所有矿工都诚实,矿工效率的不平等能否通过延误来解释?传统上,这种效率相关问题只在整个系统一级,在矿工直接相互联系的同侪(P2P)环境中,在矿工直接相互联系的同侪(P2P)环境中解决。尽管今天矿工通常在中央协调员管理的采矿池中集中计算能力,但这种协调环境中的效率几乎没有研究。在本文件中,我们提出了一个简单的工作链证明模式,对P2P和协调环境中的延误都有解释;我们以封闭的形式表达了协调环境的效率,对矿工和矿工来说都是任意的,对整个系统和每个矿工来说都是任意的。我们利用这一结果来表明,在拖延中存在着不平等,但是,如果所有矿工在这种协调环境下的效率都比总体协调员的能力要低,那么在进行这种模拟时,我们就能证明他们的效率是平等的。

0
下载
关闭预览

相关内容

P2P:IEEE International Conference on Peer-to-Peer Computing。 Explanation:IEEE对等计算国际会议。 Publisher:IEEE。 SIT:http://dblp.uni-trier.de/db/conf/p2p/
专知会员服务
39+阅读 · 2020年9月6日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
LibRec 精选:位置感知的长序列会话推荐
LibRec智能推荐
3+阅读 · 2019年5月17日
分享 8 个有趣且实用的 API
前端大全
3+阅读 · 2019年5月6日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
【TED】什么让我们生病
英语演讲视频每日一推
7+阅读 · 2019年1月23日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】TensorFlow手把手CNN实践指南
机器学习研究会
5+阅读 · 2017年8月17日
VIP会员
相关资讯
LibRec 精选:位置感知的长序列会话推荐
LibRec智能推荐
3+阅读 · 2019年5月17日
分享 8 个有趣且实用的 API
前端大全
3+阅读 · 2019年5月6日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
【TED】什么让我们生病
英语演讲视频每日一推
7+阅读 · 2019年1月23日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】TensorFlow手把手CNN实践指南
机器学习研究会
5+阅读 · 2017年8月17日
Top
微信扫码咨询专知VIP会员