The recent success of neural networks enables a better interpretation of 3D point clouds, but processing a large-scale 3D scene remains a challenging problem. Most current approaches divide a large-scale scene into small regions and combine the local predictions together. However, this scheme inevitably involves additional stages for pre- and post-processing and may also degrade the final output due to predictions in a local perspective. This paper introduces Fast Point Transformer that consists of a new lightweight self-attention layer. Our approach encodes continuous 3D coordinates, and the voxel hashing-based architecture boosts computational efficiency. The proposed method is demonstrated with 3D semantic segmentation and 3D detection. The accuracy of our approach is competitive to the best voxel-based method, and our network achieves 136 times faster inference time than the state-of-the-art, Point Transformer, with a reasonable accuracy trade-off.


翻译:神经网络最近的成功可以更好地解释3D点云,但处理大型的3D场景仍是一个具有挑战性的问题。当前大多数方法将大型场景分成小区域,并将当地预测结合起来。然而,这个办法不可避免地涉及处理前和处理后的更多阶段,并且可能由于从当地角度的预测而降低最终产出。本文介绍了由新的轻量自留层组成的快点变异器。我们的方法编码为连续3D座坐标,以及基于 voxel hashing 的建筑提高了计算效率。拟议方法以3D 语义分解和 3D 探测来演示。我们的方法的准确性是具有竞争力的基于最佳 voxel 的方法,而我们的网络在合理的精确交易中比尖端变速136倍。

0
下载
关闭预览

相关内容

FAST:Conference on File and Storage Technologies。 Explanation:文件和存储技术会议。 Publisher:USENIX。 SIT:http://dblp.uni-trier.de/db/conf/fast/
专知会员服务
22+阅读 · 2021年9月20日
专知会员服务
24+阅读 · 2021年8月22日
专知会员服务
29+阅读 · 2021年7月30日
【CVPR2021】基于Transformer的视频分割领域
专知会员服务
36+阅读 · 2021年4月16日
专知会员服务
109+阅读 · 2020年3月12日
Transformer文本分类代码
专知会员服务
116+阅读 · 2020年2月3日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
一文读懂Faster RCNN
极市平台
5+阅读 · 2020年1月6日
已删除
将门创投
8+阅读 · 2019年1月30日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
11+阅读 · 2021年10月26日
Arxiv
3+阅读 · 2021年10月14日
Arxiv
3+阅读 · 2020年11月28日
Few-shot Adaptive Faster R-CNN
Arxiv
3+阅读 · 2019年3月22日
VIP会员
相关VIP内容
专知会员服务
22+阅读 · 2021年9月20日
专知会员服务
24+阅读 · 2021年8月22日
专知会员服务
29+阅读 · 2021年7月30日
【CVPR2021】基于Transformer的视频分割领域
专知会员服务
36+阅读 · 2021年4月16日
专知会员服务
109+阅读 · 2020年3月12日
Transformer文本分类代码
专知会员服务
116+阅读 · 2020年2月3日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
一文读懂Faster RCNN
极市平台
5+阅读 · 2020年1月6日
已删除
将门创投
8+阅读 · 2019年1月30日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
相关论文
Arxiv
11+阅读 · 2021年10月26日
Arxiv
3+阅读 · 2021年10月14日
Arxiv
3+阅读 · 2020年11月28日
Few-shot Adaptive Faster R-CNN
Arxiv
3+阅读 · 2019年3月22日
Top
微信扫码咨询专知VIP会员