In addition to the treatment effect for all randomized patients, sometimes it is of interest to understand the treatment effect for a principal stratum, a subset of patients defined by one or more post-baseline variables. For example, what is the treatment effect for those patients who could be compliant with the experimental treatment? One commonly used assumption for estimating such a treatment effect is deterministic monotonicity, which assumes that a patient with a stratum-defining event under one treatment would also have that event under the alternative treatment. Alternatively, a less widely used stochastic monotonicity condition assumes the probability of a patient in a stratum with a stratum-defining event under one treatment is no smaller (or no larger) than that under the alternative treatment. In this article, we discuss the lack of plausibility of the deterministic monotonicity assumption and the advantages of using the principal score for estimating principal strata effects in clinical trials through theoretic argument and a real data example from a 2x2 cross-over study. As we illustrate, in some cases, methods based on modeling the probability of strata membership using baseline covariates (the principal score) may lead to reliable inferences without the need for making monotonicity assumptions.
翻译:除了所有随机患者的治疗效果外,有时人们有兴趣了解主要直流(一种或多种基底变数界定的一组患者)的治疗效果;例如,对于能够符合实验治疗的患者的治疗效果是什么?这种治疗效果通常使用的一种假设是确定性单一性,这种假设假设假设在一种治疗下具有分层确定事件的患者也会在替代治疗下发生这种事件;或者,使用较少的随机单一性症状假设在一种治疗下处于分层的患者的概率不小于(或不大于)在一种治疗下可以符合实验治疗的患者的治疗效果;在本篇文章中,我们讨论了确定性单一性假设缺乏合理性的问题,以及利用主评分在临床试验中估计主要阶层影响的优势的好处,其方法是通过理论论论论论和2x2交叉研究提供真实数据实例。正如我们所说明的,在某些情况下,基于在一种分层间断事件中的病人在一种治疗下确定分层确定事件的可能性的方法,并不小于(或不大于)在另一种疗法下,使用可靠的单位假设,因此,可以使用可靠的分数计算成层概率的可能性的方法。