Online Social Media platforms (such as Twitter and Facebook) are extensively used for spreading the news to a wider public effortlessly at a rapid pace. However, now a days these platforms are also used with an aim of spreading rumors and fake news to a large audience in a short time span that can cause panic, fear, and financial loss to society. Thus, it is important to detect and control these rumors before it spreads to the masses. One way to control the spread of these rumors is by identifying possible suspicious users who are often involved in spreading the rumors. Our basic assumption is that the users who are often involved in spreading rumors are more likely to be suspicious in contrast to the users whose involvement in spreading rumors are less. This is due to the fact that sometimes, users may posts the rumor tweets by accident. In this paper, we use PHEME rumor tweet dataset which contains rumor and non-rumor tweets information on five incidents, that is, i) Charlie hebdo, ii)German wings crash, iii)Ottawa shooting, iv)Sydney siege, and v)Ferguson. We transform this rumor tweets dataset into suspicious users dataset before leveraging Graph Neural Network (GNN) based approach for identifying suspicious users. Specifically, we explore Graph Convolutional Network (GCN),which is a type of GNN, for identifying suspicious users and then we compare GCN results with the other three approaches which act as baseline approaches: SVM, RF and LSTM based deep learning architecture. Extensive experiments performed on real-world dataset, where we achieve up to 0.864 value for F1-Score and 0.720 value for AUC ROC, shows the effectiveness of GNN based approach for identifying suspicious users.


翻译:社交媒体在线平台(如Twitter和Facebook)被广泛用于将消息传播给更广大的公众,且速度不快。然而,如今,这些平台也被用来在很短的时间内将流言和假消息传播给广大观众,这可能会给社会造成恐慌、恐惧和金融损失。因此,在流言传播到大众之前,必须检测和控制这些流言。控制这些流言传播的一个办法是查明经常参与散布谣言的可能可疑用户。我们的基本假设是,经常参与散布谣言的用户更有可能与参与散布谣言的用户相比产生怀疑。这是因为,有时用户可能会在短短的时间内将谣言和假消息传播给广大观众造成恐慌、恐惧和金融损失。因此,我们使用PHEM的传言推文数据集,其中包含关于五起事件的流言和非争议性推文信息。 即,Charlie hebdo,ii)德国的翅膀崩溃,iii)Ottawa拍摄,iv)Syney围困,以及varson的用户在传播谣言中更有可能。我们把这个流言推文推介数据系统在G型的网络上,我们用GOI-G数据库的直判数据,我们用直判的用户在GOLOLLA上,我们用来定位数据库的模型上,我们用直判数据搜索的计算数据。

0
下载
关闭预览

相关内容

专知会员服务
44+阅读 · 2020年10月31日
系列教程GNN-algorithms之六:《多核卷积拓扑图—TAGCN》
专知会员服务
49+阅读 · 2020年8月8日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
人工智能 | 国际会议信息6条
Call4Papers
4+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】TensorFlow手把手CNN实践指南
机器学习研究会
5+阅读 · 2017年8月17日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
20+阅读 · 2019年11月23日
Signed Graph Attention Networks
Arxiv
7+阅读 · 2019年9月5日
Arxiv
14+阅读 · 2018年4月18日
VIP会员
相关VIP内容
专知会员服务
44+阅读 · 2020年10月31日
系列教程GNN-algorithms之六:《多核卷积拓扑图—TAGCN》
专知会员服务
49+阅读 · 2020年8月8日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
相关资讯
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
人工智能 | 国际会议信息6条
Call4Papers
4+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】TensorFlow手把手CNN实践指南
机器学习研究会
5+阅读 · 2017年8月17日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员