Quantum many-body physics simulation has important impacts on understanding fundamental science and has applications to quantum materials design and quantum technology. However, due to the exponentially growing size of the Hilbert space with respect to the particle number, a direct simulation is intractable. While representing quantum states with tensor networks and neural networks are the two state-of-the-art methods for approximate simulations, each has its own limitations in terms of expressivity and optimization. To address these challenges, we develop a novel architecture, Autoregressive Neural TensorNet (ANTN), which bridges tensor networks and autoregressive neural networks. We show that Autoregressive Neural TensorNet parameterizes normalized wavefunctions with exact sampling, generalizes the expressivity of tensor networks and autoregressive neural networks, and inherits a variety of symmetries from autoregressive neural networks. We demonstrate our approach on the 2D $J_1$-$J_2$ Heisenberg model with different systems sizes and coupling parameters, outperforming both tensor networks and autoregressive neural networks. Our work opens up new opportunities for both scientific simulations and machine learning applications.
翻译:量子多体物理模拟对于理解基础科学并在量子材料设计和量子技术方面有应用价值。然而,由于希尔伯特空间随粒子数呈指数级增长,直接模拟是不可行的。 而使用张量网络和神经网络表示量子态是近似模拟的两种最先进方法,但在表达能力和优化方面各自存在局限性。 为了解决这些挑战,我们开发了一种新型体系结构,Autoregressive神经张量网络(ANTN),它桥接了张量网络和自回归神经网络。 我们展示了Autoregressive神经张量网络通过精确抽样来参数化归一化的波函数,增强了张量网络和自回归神经网络的表达能力,并继承了自回归神经网络的各种对称性。 我们在不同系统大小和耦合参数下的2D $J_1$-$J_2$海森堡模型上展示了我们的方法,优于张量网络和自回归神经网络。 我们的工作为科学模拟和机器学习应用开辟了新的机遇。