Caching high-frequency reuse contents at the edge servers in the mobile edge computing (MEC) network omits the part of backhaul transmission and further releases the pressure of data traffic. However, how to efficiently decide the caching contents for edge servers is still an open problem, which refers to the cache capacity of edge servers, the popularity of each content, and the wireless channel quality during transmission. In this paper, we discuss the influence of unknown user density and popularity of content on the cache placement solution at the edge server. Specifically, towards the implementation of the cache placement solution in the practical network, there are two problems needing to be solved. First, the estimation of unknown users' preference needs a huge amount of records of users' previous requests. Second, the overlapping serving regions among edge servers cause the wrong estimation of users' preference, which hinders the individual decision of caching placement. To address the first issue, we propose a learning-based solution to adaptively optimize the cache placement policy. We develop the extended multi-armed bandit (Extended MAB), which combines the generalized global bandit (GGB) and Standard Multi-armed bandit (MAB). For the second problem, a multi-agent Extended MAB-based solution is presented to avoid the mis-estimation of parameters and achieve the decentralized cache placement policy. The proposed solution determines the primary time slot and secondary time slot for each edge server. The proposed strategies are proven to achieve the bounded regret according to the mathematical analysis. Extensive simulations verify the optimality of the proposed strategies when comparing with baselines.
翻译:移动边缘计算(MEC)网络边缘服务器的高频再利用内容在移动边缘计算(MEC)网络的边缘服务器上屏蔽了高频再利用内容,省略了后空传输的部分,进一步释放了数据传输的压力。然而,如何高效地决定边缘服务器的缓存内容仍是一个尚未解决的问题,即边缘服务器的缓存能力、每种内容的普及程度以及传输过程中的无线频道质量。在本文中,我们讨论了在边缘服务器缓存放置解决方案中未知用户密度和内容受欢迎程度的影响。具体地说,为了在实际网络中实施缓存放置解决方案,需要解决两个问题。首先,对未知用户偏好度的估算需要大量用户先前请求的记录。第二,边缘服务器服务区域的重叠导致对用户偏好度的错误估计,这妨碍了对缓存位置的单个决定。为了解决第一个问题,我们提出了一个基于学习的解决方案,以适应性地优化边端服务器的缓存定位政策。我们开发了扩展的多臂大条(Extend MAB),将全球大条和标准多频段定义的双向二层分析,在确定每个缩缩缩缩缩缩缩缩缩缩缩定义策略时,而最终选择了MAredial- 。