Temporal logics are widely used by the Formal Methods and AI communities. Linear Temporal Logic is a popular temporal logic and is valued for its ease of use as well as its balance between expressiveness and complexity. LTL is equivalent in expressiveness to Monadic First-Order Logic and satisfiability for LTL is PSPACE-complete. Linear Dynamic Logic (LDL), another temporal logic, is equivalent to Monadic Second-Order Logic, but its method of satisfiability checking cannot be applied to a nontrivial subset of LDL formulas. Here we introduce Automata Linear Dynamic Logic on Finite Traces (ALDL_f) and show that satisfiability for ALDL_f formulas is in PSPACE. A variant of Linear Dynamic Logic on Finite Traces (LDL_f), ALDL_f combines propositional logic with nondeterministic finite automata (NFA) to express temporal constraints. ALDL$_f$ is equivalent in expressiveness to Monadic Second-Order Logic. This is a gain in expressiveness over LTL at no cost.
翻译:常规方法(LDL)广泛使用时空逻辑。线性时空逻辑是一种流行的时时逻辑,它因其易于使用及其在表达性和复杂性之间的平衡而具有价值。LTL在表达性上相当于LTL的莫迪奇一极逻辑和对立性。PSPACE已经完成。线性动态逻辑(LDL)是另一种时间逻辑,它相当于莫蒂奇二正正向逻辑(LDL),但它的可攻击性检查方法不能适用于LDL公式的非三端子。在这里,我们采用Automata线性线性逻辑(ALDL_f),并显示ALDL_f公式的可静性在PSPACE中。线性线性逻辑(LDL_f)的变式,ALDL_f将理论逻辑与非非定势性有限自动自动数据(NFA)结合,以表示时间限制。ALD$f$在明示性与莫迪·二奥德尔逻辑成本上取得。