We posit that persisting and transforming similarity relations form the structural basis of any comprehensible dynamic system. This paper introduces Similarity Field Theory, a mathematical framework that formalizes the principles governing similarity values among entities and their evolution. We define: (1) a similarity field $S: U \times U \to [0,1]$ over a universe of entities $U$, satisfying reflexivity $S(E,E)=1$ and treated as a directed relational field (asymmetry and non-transitivity are allowed); (2) the evolution of a system through a sequence $Z_p=(X_p,S^{(p)})$ indexed by $p=0,1,2,\ldots$; (3) concepts $K$ as entities that induce fibers $F_α(K)={E\in U \mid S(E,K)\ge α}$, i.e., superlevel sets of the unary map $S_K(E):=S(E,K)$; and (4) a generative operator $G$ that produces new entities. Within this framework, we formalize a generative definition of intelligence: an operator $G$ is intelligent with respect to a concept $K$ if, given a system containing entities belonging to the fiber of $K$, it generates new entities that also belong to that fiber. Similarity Field Theory thus offers a foundational language for characterizing, comparing, and constructing intelligent systems. At a high level, this framework reframes intelligence and interpretability as geometric problems on similarity fields--preserving and composing level-set fibers--rather than purely statistical ones. We prove two theorems: (i) asymmetry blocks mutual inclusion; and (ii) stability implies either an anchor coordinate or asymptotic confinement to the target level (up to arbitrarily small tolerance). Together, these results constrain similarity-field evolution and motivate an interpretive lens that can be applied to large language models.
翻译:我们提出,持续存在且不断演化的相似性关系构成了任何可理解动态系统的结构基础。本文引入相似性场理论,这是一个数学框架,用于形式化实体间相似性值及其演化的基本原理。我们定义了:(1) 在实体全集 $U$ 上的相似性场 $S: U \times U \to [0,1]$,满足自反性 $S(E,E)=1$,并将其视为一个有向关系场(允许非对称性和非传递性);(2) 系统通过索引为 $p=0,1,2,\ldots$ 的序列 $Z_p=(X_p,S^{(p)})$ 进行演化;(3) 概念 $K$ 作为诱导纤维 $F_α(K)={E\in U \mid S(E,K)\ge α}$ 的实体,即一元映射 $S_K(E):=S(E,K)$ 的超水平集;以及 (4) 一个生成新实体的生成算子 $G$。在此框架内,我们形式化了一个关于智能的生成式定义:若一个算子 $G$ 在给定包含属于概念 $K$ 纤维的实体的系统时,能生成同样属于该纤维的新实体,则称 $G$ 相对于概念 $K$ 是智能的。因此,相似性场理论为表征、比较和构建智能系统提供了一种基础性语言。在高层面上,该框架将智能和可解释性重新定义为相似性场上的几何问题——即保持和组合水平集纤维——而非纯粹的统计问题。我们证明了两个定理:(i) 非对称性阻碍相互包含;(ii) 稳定性意味着要么存在锚定坐标,要么渐近地(在任意小的容差范围内)收敛于目标水平。这些结果共同约束了相似性场的演化,并激发了一种可应用于大语言模型的解释性视角。