State-of-the-art pre-trained models have been shown to memorise facts and perform well with limited amounts of training data. To gain a better understanding of how these models learn, we study their generalisation and memorisation capabilities in noisy and low-resource scenarios. We find that the training of these models is almost unaffected by label noise and that it is possible to reach near-optimal performances even on extremely noisy datasets. Conversely, we also find that they completely fail when tested on low-resource tasks such as few-shot learning and rare entity recognition. To mitigate such limitations, we propose a novel architecture based on BERT and prototypical networks that improves performance in low-resource named entity recognition tasks.


翻译:为了更好地了解这些模型是如何学习的,我们研究了这些模型在吵闹和低资源情况下的概括和记忆能力。我们发现,这些模型的培训几乎不受标签噪音的影响,甚至有可能在极为吵闹的数据集上达到接近最佳的性能。相反,我们也发现,在测试低资源任务时,这些模型是完全失败的,这些低资源任务包括少见的学习和稀有的实体识别。为了减少这些局限性,我们提议了以BERT和原型网络为基础的新结构,以提高低资源实体识别任务的业绩。

0
下载
关闭预览

相关内容

自监督学习最新研究进展
专知会员服务
76+阅读 · 2021年3月24日
最新《Transformers模型》教程,64页ppt
专知会员服务
306+阅读 · 2020年11月26日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
已删除
将门创投
7+阅读 · 2019年10月15日
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
Arxiv
5+阅读 · 2019年11月22日
Arxiv
4+阅读 · 2019年9月26日
VIP会员
相关VIP内容
自监督学习最新研究进展
专知会员服务
76+阅读 · 2021年3月24日
最新《Transformers模型》教程,64页ppt
专知会员服务
306+阅读 · 2020年11月26日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
相关资讯
已删除
将门创投
7+阅读 · 2019年10月15日
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
Top
微信扫码咨询专知VIP会员