The COVID-19 pandemic, which spread rapidly in late 2019, has revealed that the use of computing and communication technologies provides significant aid in preventing, controlling, and combating infectious diseases. With the ongoing research in next-generation networking (NGN), the use of secure and reliable communication and networking is of utmost importance when dealing with users' health records and other sensitive information. Through the adaptation of Artificial Intelligence (AI)-enabled NGN, the shape of healthcare systems can be altered to achieve smart and secure healthcare capable of coping with epidemics that may emerge at any given moment. In this article, we envision a cooperative and distributed healthcare framework that relies on state-of-the-art computing, communication, and intelligence capabilities, namely, Federated Learning (FL), mobile edge computing (MEC), and Blockchain, to enable epidemic (or suspicious infectious disease) discovery, remote monitoring, and fast health-authority response. The introduced framework can also enable secure medical data exchange at the edge and between different health entities. Such a technique, coupled with the low latency and high bandwidth functionality of 5G and beyond networks, would enable mass surveillance, monitoring and analysis to occur at the edge. Challenges, issues, and design guidelines are also discussed in this article with highlights on some trending solutions.


翻译:2019年后期迅速蔓延的COVID-19大流行表明,计算机和通信技术的使用在预防、控制和防治传染病方面提供了重要的帮助,随着下一代网络(NGN)的不断研究,使用安全可靠的通信和网络对于处理用户的健康记录和其他敏感信息至关重要,通过修改人工智能(AI)带动的NGN,保健系统的形状可以改变,以便实现智能和安全的保健,能够应付任何特定时刻可能出现的流行病。在本篇文章中,我们设想了一个合作和分布式保健框架,依靠最先进的计算、通信和情报能力,即联邦学习(FL)、移动边缘计算(MEC)和封锁链,以便能够发现流行病(或可疑传染病),进行远程监测和快速卫生当局反应。引入的框架还可以使边缘和不同卫生实体之间能够安全地交换医疗数据。这种技术,加上5G网络和以外网络的低纬度和高频带功能,将使得大规模监测、监测和分析能够在边缘出现一些解决办法。 挑战、问题和问题在设计中出现。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
专知会员服务
34+阅读 · 2020年12月28日
专知会员服务
44+阅读 · 2020年12月18日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
人工智能 | AAAI 2019等国际会议信息7条
Call4Papers
5+阅读 · 2018年9月3日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Data lake concept and systems: a survey
Arxiv
0+阅读 · 2021年6月17日
Arxiv
0+阅读 · 2021年6月17日
Arxiv
0+阅读 · 2021年6月11日
Arxiv
45+阅读 · 2019年12月20日
Arxiv
35+阅读 · 2019年11月7日
VIP会员
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
人工智能 | AAAI 2019等国际会议信息7条
Call4Papers
5+阅读 · 2018年9月3日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员