News is a central source of information for individuals to inform themselves on current topics. Knowing a news article's slant and authenticity is of crucial importance in times of "fake news," news bots, and centralization of media ownership. We introduce Newsalyze, a bias-aware news reader focusing on a subtle, yet powerful form of media bias, named bias by word choice and labeling (WCL). WCL bias can alter the assessment of entities reported in the news, e.g., "freedom fighters" vs. "terrorists." At the core of the analysis is a neural model that uses a news-adapted BERT language model to determine target-dependent sentiment, a high-level effect of WCL bias. While the analysis currently focuses on only this form of bias, the visualizations already reveal patterns of bias when contrasting articles (overview) and in-text instances of bias (article view).
翻译:了解一篇新闻文章的倾斜性和真实性在“假新闻”、新闻机器人和媒体所有权集中化的时代至关重要。 我们介绍Newsalyze, 一位有偏见的新闻读者,关注一种微妙而又强大的媒体偏见形式,以文字选择和标签命名的偏见(WCL)。 世界公民联盟的偏见可以改变对新闻中报道的实体的评估,例如“自由战士”与“恐怖分子”。 分析的核心是一个神经模型,它使用经新闻改编的BERT语言模型来确定依赖目标的情绪,这是世界公民联盟偏见的一种高影响。 虽然目前的分析只侧重于这种偏见形式,但视觉化已经揭示了在对比文章(overview)和文字中偏见事例时的偏见模式(文章观点 ) 。